首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prolonged simulated acid rain on the biochemistry of Scots pine needles were studied in Finnish Lapland. Pine trees were exposed by spraying the foliage and soil with either clean water or simulated acid rain (SAR; both sulphuric and nitric acids) over the period 1985-1991. The concentrations of carbohydrates (starch, glucose, fructose, sucrose) in one-year-old pine needles were not affected by SAR-treatments. The SAR-treatments did not have significant effects on protein bound amino acids, which was true also for most of the free amino acids. However, the citrulline concentration was over three-fold greater in the foliage of pines exposed to SAR of pH 3 compared to irrigated controls. The concentrations of total phenolics, individual low molecular weight phenolics and soluble proanthocyanidins were not affected by the treatments, but insoluble proanthocyanidins had increased in acid-treated trees. Some of the studied biochemical compounds showed significant differences between two sub-areas (similar treatments) only 120 m apart.  相似文献   

2.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

3.
To study the biological variation in the content of some persistent organic pollutants, viz hexachlorobenzene (HCB), alpha- and gamma-hexachlorocyclohexane (alpha- and gamma-HCH), and 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (DDT) were analysed in needles from Scots pine trees growing at an isolated peninsula south of Stockholm, Sweden. The concentration variations of each compound was evaluated by a nested analysis of variance (ANOVA) with sampling site specific compass direction, individual tree, and sampling height as factors. Two pair-wise post hoc tests were used to test significant results from the ANOVA. The hexachlorocyclohexanes showed no significant differences between sampling site, trees or sampling height. DDT concentration was significantly lower at the sampling site with the densest vegetation compared to at least three of the other sampling sites. HCB was significantly lower at the lowest sampling height (0.5 m).  相似文献   

4.
Three-year-old Douglas firs (Pseudotsuga menziesii) were fumigated with 180 microg m(-3) NH3 or clean (charcoal-filtered) air. During these fumigations the plants received 15 mm artificial rain weekly, supplemented with 20, 500 or 2500 micromol litre(-1) (NH4)2SO4. Exposure to NH3 and NH4+ for 14 weeks resulted in a change of the nutrient status of the needles. The most remarkable effect was the increase in the N/K ratio, due to both uptake of N and leaching of K. The action of NH3 was stronger than that of NH4+. Both NH3 and (NH4)2SO4 affected the epicuticular wax layer and decreased mycorhiza frequency. Following fumigation and artificial rain treatments, needles were incubated for 8 h in a medium containing 0, 50, 250, 500 and 2500 micromol litre(-1) (NH4)2SO4. Almost no exchange of Ca, Mg and K for NH4+ was found. Therefore this ion exchange probably explains only a minor part of the changes in nutrient status of the whole trees.  相似文献   

5.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

6.
We investigated the additive and interactive effects of simulated acid rain and elevated ozone on C and N contents, and the C:N ratio of one-year-old and current-year foliage of field-grown mature trees and their half-sib seedlings of a stress tolerant genotype of ponderosa pine. Acid rain levels (pH 5.1 and 3.0) were applied weekly to foliage only (no soil acidification or N addition), from January to April, 1992. Plants were exposed to two ozone levels (ambient and twice-ambient) during the day from September 1991 to November 1992. The sequential application of acid rain and elevated ozone mimicked the natural conditions. Twice-ambient ozone significantly decreased foliar N content (by 12-14%) and increased the C:N ratio of both one-year-old and current-year foliage of seedlings. Although similar ozone effects were also observed on one-year-old foliage of mature trees, the only statistically significant effect was an increased C:N ratio when twice-ambient ozone combined with pH 3.0 rain (acid rain by ozone interaction). Enhancing the effect of twice-ambient ozone in increasing the C:N ratio of one-year-old foliage of mature trees in June was the only significant effect of acid rain.  相似文献   

7.
Effects after long-term fumigation and simulated acidic rain (pH 4.0) treatment in open-top chambers (OTC) during 5 vegetation periods on ectomycorrhizal (EM) frequency, fine root structure and distribution of short roots were recorded for Norway spruce. Simultaneous application of ozone and SO(2) resulted in a significant decrease (P< or =0.01) in the proportion of EM root tips and an increase in the numbers of necrotic short roots. The observed differences were partly due to more than additive effects of ozone and SO(2). On the basis of EM and non-mycorrhizal (NM) short roots in the irrigated controls (OTC-V, pH 5.6, Ah-horizon: EM + NM/cm=0.05) the acid treatments resulted in drastic effects (P< or =0.05) on the branching density and the proportion of EM root tips and NM short roots. Relative numbers of short roots infected by indigenous EM fungi with trees in the fumigation treatments at pH 4.0 were similar: 1.5-1.9 EM tips/cm and differed noticeably from the control: 5.2 EM tips/cm. Again, increasing numbers of necrotic and NM short roots were noted. Parallel measurements by the ingrowth-core technique confirm the argument, that EM formation seems to be a reliable indicator of pollution-induced stress.  相似文献   

8.
Viability, germination and tube length were investigated in pollen grains of field-grown 'Summerred' apple trees (Malus domestica Borkh) exposed to deionized water, rainfall or simulated acid rain at pH 5.6, 4.0 and 3.0. Pollen viability and germination significantly decreased with lower values of pH and with increasing number of treatments. The effects of pH 5.6 and natural rainfall were not significant. Electron microscope investigation of vegetative pollen cells of plants exposed to acid rain at pH 4.0 and 3.0 showed modified features in mitochondria, plastids and endoplasmic reticulum.  相似文献   

9.
The effect of ozone (< 10, 200, or 400 microg m(-3)), on foliar nutrient concentrations of Picea abies were determined by fumigating potted grafts from mature trees (> 55 and 125 years), representing six clones, in open-top chambers at two locations in Norway. The concentration of nutrients in needles of grafted plants were significantly affected by clone and location. Generally, the concentrations of nutrients were not affected by ozone, but a significant increase in the concentrations of potassium and iron in two of the clones were found. These two clones were the only ones injured (yellow needles) by the fumigation.  相似文献   

10.
Five clones of 3-year old Norway spruce (Picea abies [L.] Karst), planted in a soil from the Bavarian Forest (pH 4.4) or a soil from the Calcareous Bavarian Alps (pH 6.9), were exposed for two successive vegetation periods, in closed environmental chambers, to a pollution treatment consisting of acidic mist (pH 3.0) plus ozone levels of 100 microg m(-3) with episodes of 130-360 microg m(-3); control trees were exposed to mist of pH 5.6 and ozone levels of 50 microg m(-3). Climatic and pollution protocols followed the diurnal and seasonal pattern characteristic for the Inner Bavarian Forest in Southern Germany, an area affected by the new-type forest decline. Biometric parameters were strongly related to clone and soil. Pollution treatment had a limited effect on only a few growth parameters. The stem diameter growth increment of two clones was reduced by pollution treatment in both soils, a third clone was affected in the acidic soil only. Two other clones were not affected at all. Stem volume increment of three clones, calculated as D(2)H, was reduced by pollution treatment in the neutral soil, a fourth clone was affected in the acidic soil only. Bud break was either delayed (two clones) or accelerated (two other clones) by treatment. Depending on soil and clone, needle yellowing was observed in previous years' needles in both treatment and control trees exposed to increased light intensities. The 'spotted' yellowing was not identical to symptoms found in forest decline areas and was most likely a consequence of nutrient deficiencies during the vegetation period preceding the experiment. The results of this experiment are discussed with regard to field observations and forest productivity. The complex pattern of growth responses resulting from interactions between air pollution, soil and genetic factors is considered to reflect different susceptibilities of trees to air pollutants.  相似文献   

11.
The effects of air pollutants on forests around the eastern part of the Gulf of Finland were studied by measurement of the sulphur and calcium content of pine needles and evaluation of the ecological conditions of pine forests. Several parameters for pine trees and their needles were chosen as well as the species composition and condition of epiphytic lichens. Very high pine needle S- and Ca-contents were measured in the vicinity of the Narva and Slantsy plants. In this region both the acid and basic pollutant load is massive, partly neutralizing each other. It is suggested that the total load will, sooner or later, cause unexpected environmental damage. Wide 'lichen desert' areas were detected around Narva and Slantsy. Near the margins of these areas extraordinary epiphytes on pines were observed namely Xanthoria parietina (L.) Th.Fr. and red-coloured green alga Trentepohlia umbrina. They are regarded as indicators of alkaline pollution. The lowest pine needle S- and Ca-contents of the study area were measured in south-eastern Finland. The condition of pine forests and their needles was, however, better on the neighbouring Karelian Isthmus although the species number of epiphytic lichens was very low and the condition of the lichens was poor. It is suggested that these most sensitive indicators of air pollutants are damaged by pollutants from St Petersburg and Narva. Vast virgin forests of the Karelian Isthmus act as pollutant sinks reducing the effect of pollutants on trees. On the Finnish side intensive forest management has been carried on for many decades making forests and trees more sensitive to pollutants.  相似文献   

12.
As a part of a broader research into the nutrition of silver fir (Abies alba Mill.), the variation of calcium concentrations was investigated in needles and soil in two subsequent, climatologically diverse years. Statistically significant differences between plots were determined in Ca concentrations in soils. Concentrations of Ca in needles were statistically different regarding plot, defoliation class, sampling date within the same year and also between years. Fir trees on acid-rock based soils had lower, often inadequate concentrations of Ca in needles; the opposite was true for trees growing on Ca-rich soils. Trees of lower vitality generally exhibited poor Ca nutrition. Drought in the second year of research caused poor absorption of Ca on all plots and in all defoliation classes, but the combined influence of climate and soil properties affected especially trees of low vitality on acid-rock based soils.  相似文献   

13.
Foliage on spruce trees (Picea rubens Sarg.) growing on dry SO(2) deposition zones (dry SO(2) deposition ranging from 0.5 and 8.5 S kg ha(-1) year(-1)) downwind from a SO(2) emission source was analyzed to assess chronic effects of long-term low-grade SO(2) deposition on net photosynthesis, stomatal conductance, dark respiration, stomatal antechamber wax structures, elemental concentrations in and on foliage (bulk and surficial concentrations), and types of epiphytic fungi that reside in the phylloplane. Elemental distributions on stomatal antechambers, on fungal colonies, and on smooth surfaces between stomates and fungus colonies were determined with a scanning electronic microscope (SEM) by way of X-ray scanning. It was found that net photosynthesis of newly developed spruce foliage (current-year, and 1-year-old) was not significantly affected by the local SO(2) deposition rates. Sulfur dioxide deposition, however, may have contributed to the gradual decrease in net photosynthesis with increasing needle age. Dark respiration rates were significantly higher on foliage taken from high SO(2) deposition zones. Stomatal rod-web structures deteriorated to flakes with increasing needle age and increasing SO(2) deposition. Further inspection of the needle surfaces revealed an increasing abundance of fungal colonies with increasing needle age. Many fungal taxa were isolated and identified. It was found that black yeasts responded positively, and Xylohypha pinicola responded negatively to high rates of SO(2) deposition. Surficial concentrations of elements such as P, S, K, Cl, Ca were about 10 times higher on fungal colonies than on smooth needle surfaces. Surficial Ca contents on 4 or 5-year-old needles decreased with increasing SO(2) deposition, but surficial S concentrations remained the same. In contrast, bulk foliar Ca and S concentrations increased with increasing SO(2) deposition.  相似文献   

14.
An experiment was conducted to determine the extent to which rhizobia, mycorrhizal fungi, and anions in simulated rain affect plant growth response to acid deposition. Germinating subterranean clover seeds were planted in steam-pasteurized soil in pots and inoculated with Rhizobium leguminosarum, Glomus intraradices, Glomus etunicatum, R. leguminosarum + G. intraradices, R. leguminosarum + G. etunicatum, or no microbial symbionts. Beginning 3 weeks later, plants and the soil surface were exposed to simulated rain in a greenhouse on 3 days week(-1) for 12 weeks. Rain solutions were deionized water amended with background ions only (pH 5.0) or also adjusted to pH 3.0 with HNO3 only, H2SO4 only, or a 50/50 mixture of the two acids. Glomus intraradices colonized plant roots poorly, and G. intraradices-inoculated plants responded like nonmycorrhizal plants to rhizobia and rain treatments. Variation in plant biomass attributable to different rain formulations was strongest for G. etunicatum-inoculated plants, and the effect of rain formulation differed with respect to nodulation by rhizobia. The smallest plants at the end of the experiment were noninoculated plants exposed to rains (0.38 g mean dry weight total for 3 plants pot(-1)). Among nonnodulated plants infected by G. etunicatum, those exposed to HNO3 rain were largest, followed by plants exposed to HNO3 + H2SO4, pH 5.0, and H2SO4 rain, in that order. Among plants inoculated with both R. leguminosarum + G. etunicatum, however, the greatest biomass occurred with pH 5.0 rains, resulting in the largest plants in the study (1.00 g/3 plants). Treatment-related variation among root and shoot biomass data reflected those for whole-plant biomass. Based on quantification of biomass and N concentrations in shoot and root tissues, total N content of plants inoculated with G. etunicatum alone and exposed to the HNO3 + H2SO4 rains was approximately the same as plants inoculated with R. leguminosarum + G. entunicatum and exposed to pH 5 rains. Thus, the acid-mixture rains and rhizobia under no acid deposition provided approximately equal amounts of N in biomass. The significant interactions among rain formulation and the symbiotic status of the plants suggest that conclusions concerning the impact of acid deposition on plants in the environment cannot be considered reliable because most experiments on which such assessments are based have not tested confounding influences of microorganisms and precipitation characteristics.  相似文献   

15.
The phytohormone GA(3) in needles from 4-year-old Norway spruce trees was analyzed after treatment with ozone and acid mist in environmental chambers under controlled conditions. GA(3) was extracted with methanol from the lyophilized material. Subsequent purification steps included the use of polyvinylpyrollidone (PVP), cartridge reversed-phase purification, ethylacetate extraction and HPLC. The GA(3) was determined in the methylated form by means of a highly specific and sensitive enzyme immunoassay. Higher GA(3) contents were detected in young needles (year 1987) as compared to older ones (year 1986). However, no statistically significant differences were found in the GA(3) levels between the controls and the needles of trees which were treated with increased levels of ozone and acidic mist.  相似文献   

16.
Four-year-old clonal Picea abies (L.) Karst. plants were treated with ozone (100 microm(-3) plus peaks of 130 to 360 microm(-3)) and acid mist (pH 3.0) during two vegetation periods. Pulse labelling experiments on shoots were performed with [(35)S]methionine in the second year of exposure. Extraction of soluble needle proteins in citric acid buffer of pH 2.8 revealed protein patterns on SDS polyacrylamide gels that differed from those of control needles fumigated with ambient levels of ozone (50 microg m(-3)) and mist of pH 5.6. New proteins of MW 16000 and 32000 were synthesized only in ozone-exposed needles and could not be detected in the controls.  相似文献   

17.
Sitka spruce seedlings grown in pots of compost in open-top chambers (OTCs) or outside, in an agricultural loam soil, in different years, were treated with pH 2.5 acid mist comprising an equimolar solution, of H2SO4 and NH4NO3 at 1.6 mol m−3. The effects of rain, and frequency of acid mist applications on visible injury, nutrition and frost hardiness were evaluated in the OTC experiment. Similar evaluations were undertaken in the field where application frequency was dependent on windspeed, rain and direct sunlight. Rain washing significantly ameliorated the effect of acid mist on frost hardiness in OTCs. In the field experiment there was no effect of acid mist treatment. Increasing the frequency of misting in OTCs for the same exposure exacerbated the detrimental effects of acid mist, causing both visible damage and further increasing the sensitivity of the acid treated trees to freezing temperatures. The results show that the treatment environment can both ameliorate and exacerbate treatment effects.  相似文献   

18.
Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.  相似文献   

19.
Organism-induced accumulation of iron, zinc and arsenic in wetland soils   总被引:2,自引:0,他引:2  
Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems.  相似文献   

20.
Needles from spruce and fir trees were analyzed for histological changes induced by long-term exposure in open-top chambers to SO(2) and/or O(3) combined with acid rain. Light and electron microscopical evaluation revealed initial structural changes in the vascular bundle of fir needles, with an increased number of crushed sieve cells in the phloem. In addition the walls of young, adaxial sieve cells lacked the typical thickening usually observed in naturally aged needles. These findings may indicate restricted assimilate translocation. The presence of SO(2) in any treatment led to thylakoidal swellings and membrane reductions in the chloroplasts of mesophyll cells near the vascular bundle. This damage pattern resembled alterations caused by nutrient deficiency rather than by the direct action of gaseous pollutants. In general, fir appears to be more sensitive to environmental stress than spruce; this substantiates the findings of previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号