首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
利用SBR反应器,通过在线pH曲线控制好氧-缺氧反应时间,成功实现了短程生物脱氮,并考察了分段进水条件下流量分配对SBR反应器运行性能及N2O产量的影响.结果表明,与原水分2次在不同阶段等量加入反应器的二段进水方式相比,原水分3次等量进入反应器的三段进水方式能够有效降低脱氮过程中外碳源投加量和氧化亚氮产量;氧化亚氮主要产生于硝化过程,反硝化过程能够将硝化阶段积累的N2O还原至N2.2次、3次等量进水条件下,生物短程脱氮过程中乙醇投加量分别为0.8和0.6 mL,N2O释放量分别为8.86和5.05 mg·L-1(以N计).硝化过程中NO-2-N的积累是导致系统N2O产生的主要原因.  相似文献   

2.
SBR法对焦化废水生物脱氮研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明。焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(sND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3-N的去除效率在95.8%-99.2%.CODCr的去除效率在85.3%~92.6%。由于出水中NO2-N的积累。NO2—N对CODCr浓度贡献值得关注。  相似文献   

3.
《环境科学与技术》2021,44(7):145-153
该文以厌氧/缺氧/好氧方式(An/A/O)运行序批式生物反应器(SBR),采用NO_3~-驯化缺氧反硝化聚磷菌,利用pH值调控An/A/O-SBR内各菌群间的竞争优势,通过考察脱氮除磷过程的化学计量学参数变化,确定了不同pH下SBR内聚磷菌-聚糖菌(PAOs-GAOs)间竞争关系及N_2O释放特性。结果表明,An/A/O-SBR内存在PAOs和GAOs对碳源的竞争,高pH有利于反硝化聚磷菌增殖、提升SBR内同步脱氮除磷效率并降低N_2O产率。pH由6.5增至8.0,PAOs转化外碳源比例由24.1%增至55.6%。pH=8.0,SBR内脱氮和除磷效率均达90%以上,平均N_2O产率为2.8%。不同pH值下,An/A/O-SBR内厌氧阶段ΔGly/ΔPHA、ΔGly/CODin、PRA/CODin以及缺氧阶段PUA/NaRA、ΔGly/ΔPHA均表现出PAOs-GAOs共存特性,微碱性条件促进SBR内微生物趋向富集反硝化聚磷菌的生化反应动力学。pH=6.5,N_2O产率达11.2%。低pH值耦合高NO_2~-形成高浓度游离亚硝酸,对反硝化聚磷菌的毒性及对亚硝态氮还原酶、氧化亚氮还原酶的活性抑制作用,是导致低pH值下SBR脱氮除磷性能降低和N_2O产率增加的重要因素,以N_2O作为终产物的GAOs反硝化比例增加,加剧了低pH条件下N_2O释放。  相似文献   

4.
文章针对城市低碳氮比污水面临脱氮率低的问题,开发了两段SBR串联工艺系统(SBRⅠ→SBRⅡ),运行程序是SBRⅠ:进水→缺氧→沉淀→出水→好氧,SBRⅡ:进水→缺氧→好氧→沉淀→出水,研究了该工艺系统对城市低碳氮比污水的生物脱氮效率。结果表明,在进水碳氮比低至4.0左右时,两段SBR充水比均采用0.40,每个SBR运行周期均为8 h,出水总氮平均浓度低于6.5 mg/L。进水碳氮比对总氮去除率有明显影响,当进水碳氮比为3.5~3.7时,工艺的总氮去除率不低于80%;碳氮比>3.7时,总氮去除率在82%~84%;碳氮比接近5.0时,总氮去除率>86%;但碳氮比<3.4时,总氮去除率显著下降。碳源充足情况下,该工艺总氮理论去除率为:1-n2,n为充水比,在实验的低碳氮比条件下,低充水比时实验脱氮率与理论值接近,而高充水比时脱氮率的实验值略高于理论值。两段SBR工艺的运行周期从8 h+8 h增加到12 h+12 h,或者投加3 g/L的粉末沸石作为氨氮吸附剂,均能够提高工艺系统总氮的去除率,总氮去除率可接近或超过90%。相对于传统生物脱氮工艺,虽然该...  相似文献   

5.
酒精废水消化液生物硝化和脱氮试验   总被引:1,自引:0,他引:1  
杨健  周小波 《环境工程》2006,24(1):27-30
酒精糟液厌氧消化液CODCr浓度为3500~4300mgL,BOD5浓度为1500~2100mgL,TN浓度为400~700mgL,NH3N浓度为300~600mgL。采用SBR反应器对该消化液进行生物脱氮试验,对反应器的有机负荷、氨氮负荷、脱氮效果、脱氮过程中氮形态的变化以及碳源提供等进行了研究分析。试验结果表明,当消化液碳源充足,SBR充水比λ=0.35,缺氧时间3h以及BOD5污泥负荷0.26~0.32kgkg·d条件下,SBR处理出水CODCr598~632mgL,BOD560~100mgL,氨氮6~9mgL,总氮200~216mgL,总氮去除率为60%左右。该处理系统中缺氧段反应时间仅为3h,却承担70%~75%的CODCr总去除负荷,显著提高了该系统的有机负荷和氨氮负荷。在消化液碳源不足的条件下,可投加乙酸钠作为生物脱氮的外碳源,投加量宜为500mgL。  相似文献   

6.
《环境科学与技术》2021,44(4):158-164
该文以人工模拟的高C/N比(10)废水为处理对象,利用缺氧/好氧交替和高曝气的运行方式,以城市生活污水处理厂污泥作为接种污泥,研究了好氧反硝化序批式活性污泥反应器(SBR反应器)的启动过程。结果表明:在SBR反应器启动45 d后,出现明显的好氧反硝化过程;继续培养25 d,好氧反硝化SBR反应器的脱氮效率达到稳定。当反应器污泥负荷为0.11 kg COD/(kg MLSS·d)时,好氧反硝化SBR反应器对COD、总氮和氨氮的去除效率分别为(94.97%±0.53%)、(90.37%±5.89%)和(99.18%±0.34%)。城市生活污水处理厂污泥可用于好氧反硝化生物脱氮工艺的启动,缺氧/好氧交替和高曝气的方式可以加速好氧反硝化工艺的启动。  相似文献   

7.
两段SBR法去除有机物及短程硝化反硝化   总被引:28,自引:1,他引:27  
采用两段SBR法处理有机物和氨氮含量较高的化工废水.一段反应器(SBR1)的反应过程处于好氧状态,主要去除大部分有机物;二段反应器(SBR2)先好氧,去除剩余有机物和硝化反应,并且控制硝化反应进程至亚硝酸型硝化结束.然后缺氧反硝化,反硝化以原水作为碳源.试验结果表明:两段SBR法可以增加二段污泥中硝化菌的含量,使具有不同作用的2大类微生物群体分别在各自的反应器内生存.在进一步降低出水COD的同时,避免高有机负荷对硝化反应的冲击,使碳氮比(C/N)不再成为脱氮系统的影响因素.因此,与单一SBR法相比,两段SBR法不仅提高处理效率,还能节约能耗及外加碳源的费用.  相似文献   

8.
低C/N比条件下高效生物脱氮策略分析   总被引:9,自引:1,他引:8  
针对低C/N比污水传统生物脱氮碳源不足、脱氮效率不高,提出从充分利用碳源和减少生物脱氮碳源需求量两个方面,来实现高效生物脱氮.在充分利用碳源方面,介绍了好氧缺氧分段进水工艺、脉冲式SBR工艺等改进型生物脱氮工艺;在减少生物脱氮碳源需求量方面,介绍了短程硝化反硝化、厌氧氨氧化、完全自养脱氮等新型生物脱氮技术.并对这些技术和工艺的原理、优势、存在的问题以及应用情况进行了简要的分析.  相似文献   

9.
前置反硝化脱氮系统外加碳源在线控制基础   总被引:5,自引:0,他引:5  
以低碳氮比(C/N)生活污水为研究对象,对连续流前置反硝化生物脱氮系统外加碳源的控制方法进行了研究,从而能使出水硝酸盐和亚硝酸盐(NOx-N)的浓度在满足出水水质标准的情况下,尽可能减少外加碳源的投加量.试验结果表明:总回流比大于2碳源不足时,增加总回流比并不能提高脱氮效率;总回流比一定,缺氧区出水NOx--N的浓度达到2mg/L左右时,即使碳源投加量成倍增加,TN的去除率提高不多.在对总回流比与投加碳源量的相互关系分析的基础上提出了外加碳源量的控制方案:通过使缺氧区出水NOx--N浓度维持在2mg/L左右来控制外加碳源的投加量,总回流比由进水TN及出水NOx--N浓度的标准值来确定.该控制方案既容易判断碳源投加的最佳点又能节省碳源的投加量,易于在污水处理实践中实现.  相似文献   

10.
为了进一步合理利用碳源,降低曝气能耗,有效解决低C/N生活污水的脱氮问题,采用2个串联的SBR在无外加碳源的条件下处理低C/N实际生活污水,分别启动内碳源反硝化反应器(ED-SBR)和低DO硝化反应器(LDON-SBR),并按照厌氧(ED-SBR)-好氧(LDON-SBR)-缺氧(ED-SBR)的方式运行,综合考察各反应器处理性能,并探讨低DO硝化耦合内碳源反硝化工艺脱氮的可行性.结果表明:LDON-SBR反应器在DO浓度为0.3~0.5mg/L的条件下能够成功实现90%以上的硝化并稳定维持,同时反应器存在明显的同步硝化反硝化(SND)现象,SND率可达29.6%;ED-SBR反应器在厌氧阶段能够将进水中的有机物转化为内碳源并储存,在缺氧阶段能够进行内源反硝化,使NO3--N平均浓度从27.3mg/L降低至3.9mg/L,NO3--N平均去除率为86.5%;系统整体COD去除率为80%左右.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

16.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

17.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

18.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

19.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号