首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
利用氢化物发生-原子荧光光谱法(HG-AFS)分别对2014年10月和2015年6月珠江口、南海北部总溶解无机As(TDIAs,[TDIAs]=[As5+]+[As3+])的含量进行了测定,以探讨TDIAs在珠江口和南海北部的分布及其影响因素。夏季和秋季珠江口TDIAs的含量不存在显著性季节差异(t检验,置信度为95%)。夏、秋季珠江口TDIAs均呈现不保守混合行为,尤其在河海混合初期清除现象较明显,其清除百分数均在30%左右。珠江口向南海TDIAs的年输送通量约为(4.0~4.6)×105 kg。珠江口邻近海域表层TDIAs浓度较高,南海北部陆坡底层由于受到黑潮次表层水影响TDIAs浓度有所升高。夏、秋季南海北部陆坡TDIAs浓度不存在显著性季节差异。夏季南海北部主要受水团混合影响,表现出保守混合行为。珠江口和南海北部TDIAs浓度与世界其他河流以及大洋相比均处于自然水平。  相似文献   

2.
采用TPTZ(2,4,6三吡啶-s-三嗪,C18H12N6)方法对2015年6月采集的南海北部表层海水,以及珠江口东侧S断面进行了碳水化合物的分析。结果表明,溶解单糖(dissolved monosaccharide,MCHO)、溶解多糖(dissolved polysaccharide,PCHO)及溶解总糖(total dissolved carbohydrate,TCHO)的浓度范围分别是0.22~13.66,1.51~21.02和2.63~26.24 μmol C/L。表层海水MCHO、TCHO和PCHO具有相似的分布特点:近岸高,远海低;高值区大多分布在近岸受陆地影响较大的海区。S断面分析表明,该区域海水分层明显,MCHO、TCHO和PCHO分布较为相似,上层浓度高于下层浓度,浓度最高值出现在上层海水,部分站位受珠江冲淡水影响较大。表层海水的Chl a(chlorophyll a)与DOC(dissolved organic carbon)浓度分布大体上也呈现类似特点,不同之处在于水平分布方面Chl a的浓度分布与盐度分布更为类似,垂直分布方面在真光层以下Chl a与DOC的浓度分布无高值区。同时结果也表明二者的浓度分布对MCHO、TCHO和PCHO的分布有较大影响。  相似文献   

3.
春季中国南黄海与东海海水中溶解氨基酸的分布和组成   总被引:1,自引:0,他引:1  
以2011年3月南黄海与东海部分海域为研究对象,对其中48个站位海水样品的总溶解氨基酸(THAA)、溶解结合氨基酸(DCAA)、溶解游离氨基酸(DFAA)的浓度分布和组成进行了研究。结果表明:表层海水中THAA的平均浓度为2.981.72 mol/L(1.27~8.54 mol/L),DCAA的平均浓度为2.761.63 mol/L(0.91~7.70 mol/L),DFAA的平均浓度为0.310.21 mol/L(0.11~1.14 mol/L)。溶解态氨基酸水平分布的趋势大致呈现出近岸高、远岸低的特点,其中,DCAA与THAA分布规律基本一致。溶解态氨基酸的垂直分布特点为次表层与海水底层出现了高值区。春季南黄海与东海表层海水中溶解氨基酸主要由天门冬氨酸、谷氨酸、丝氨酸、甘氨酸及丙氨酸构成。表层海水中个体氨基酸间的相关性矩阵显示DFAA中有5对氨基酸之间存在显著正相关。研究发现海水中溶解氨基酸与Chl a、DOC、DIN等环境因子均无显著相关性。  相似文献   

4.
基于2011年8月底和9月初对南海北部两个断面水文参数和碳酸盐参数的调查结果,探讨了南海北部文石饱和度(Ωarag)的分布特征;并基于一个双端元混合模型,分析了上升流带来的物理混合和生物过程对Ωarag的影响。结果表明:珠江口外A断面的近岸区域受到上升流影响,而海南岛外B断面则不受上升流影响且水体呈现明显的分层现象。A、B断面的Ωarag范围分别在1.87~3.05和1.77~3.29之间,低值主要出现在A断面的近岸上升流区和B断面的深层水。基于一个双端元混合模型对A断面的分析,发现上升流带来的高CO2水体涌升最大可使Ωarag降低0.37,而近岸区好氧呼吸分解有机物释放的CO2造成Ωarag降低高达0.7,离岸区初级生产的发生则使Ωarag最大升高了0.1。在海南岛外的B断面,深层水发生好氧呼吸释放CO2是造成其Ωarag偏低的主要原因。  相似文献   

5.
自珠江三角洲和南海北部海域采集了66个表层沉积物样品,以研究该区域中PBDEs的含量、分布、来源和在环境中的迁移.研究结果表明,东江和珠江是PBDEs的高污染区,含量为12.7~7361ng·g-1,其中BDE209平均含量为1199ng·g-1,是目前世界上已报道沉积物中含量最高的区域之一.在几乎所有被分析的样品中BDE209都是最主要的同系物.东江和珠江的PBDEs主要来自东莞和广州的本地排放,而西江的PBDEs主要通过大气的传播输入.另一个高污染区澳门水域被验证是珠江三角洲水体环境中有机污染物的“汇”.  相似文献   

6.
利用GC-MS对2014年5月和8月渤海北部表层沉积物中16种优先控制PAHs含量进行了分析,探讨了5月和8月PAHs的分布特征和分子组成,分析了渤海北部表层沉积物中PAHs的污染水平、主要来源、潜在毒性和生物效应。研究表明,渤海北部表层沉积物中16种PAHs5月份含量范围为(88.5~187.7)10-9,平均含量为125.210-9,8月份含量范围为(99.6~199.3)10-9,平均含量为126.510-9;沉积物PAHs为中~低度污染水平,季节变化不明显,潜在生物效应很小;致癌PAHs潜在毒性处于中低水平。沉积物中PAHs以低环为主,高值区集中在辽东湾西南部以及金州湾和普兰店湾附近海域;比值法和主成分分析法判定沉积物中PAHs为石油来源和燃烧来源同时存在。  相似文献   

7.
南海鱼类中重金属的含量与分布   总被引:1,自引:0,他引:1  
本文通过十二种南海食用海洋鱼类的不同组织和不同食性鱼类体中重金属含量的测定结果,分析了这些鱼体中重金属在各组织中的含量分布特征和不同食性鱼类体同重金属的含量状况。  相似文献   

8.
2007年8月中国科学院南海北部开放航次期间,对南海北部的7个站位开展了微型浮游动物研究,用稀释法研究了浮游植物的生长率和微型浮游动物对浮游植物的摄食压力。浮游植物增长率变化范围为0.136~6.21/d;微型浮游动物摄食率变化范围为0.012~4.61/d,微型浮游动物对浮游植物生物量的摄食压力为1.2%~99%;微型浮游动物对初级生产力的摄食压力为2.18%~434%。浮游植物瞬时增长率与微型浮游动物丰度和叶绿素a呈负相关,随着叶绿素a和微型浮游动物丰度的降低,浮游植物瞬时增长率提高。微型浮游动物对初级生产力的摄食压力与其丰度呈正相关,微型浮游动物种类越多,丰度越高,对浮游植物生物量的摄食压力越大。微型浮游动物对初级生产力的摄食压力与盐度呈显著负相关,与叶绿素a呈显著正相关,随着叶绿素a浓度升高而摄食压力变大。  相似文献   

9.
南海北部沿岸牡蛎体内PCBs的时空分布特征及评价   总被引:1,自引:0,他引:1       下载免费PDF全文
于2008~2012年间在南海北部沿岸海域的23个重要港湾采集近江牡蛎(Crassostrea rivularis Gould )样品,用气相色谱法测定其中多氯联苯(PCBs)的残留量,并对其残留水平、时空分布趋势、组成特征以及食用安全性进行探讨与评价.结果表明:南海北部沿岸牡蛎体内的PCBs的含量范围在8.11~29.10ng/g之间(湿重,下同),平均值是(16.57±4.40)ng/g,出现频率呈正态分布.在时间上,广东、广西和海南沿岸PCBs含量随时间呈下降的总体趋势;空间分布上,珠江口岸段PCBs含量明显高于粤东、粤西、广西和海南4个岸段.PCBs同系物中以五氯联苯在总PCBs含量最高,占47.9%,其次是三氯和四氯联苯,二者之和占总PCBs的30.6%; 同系物以PCBl05、PCB118和PCB101+113为优势组分,3者之和占总量的百分比为24.0%.南海北部沿岸牡蛎体内的PCBs残留量远低于国内外相关食品安全限量标准,估算的沿海居民食用牡蛎的PCBs 暴露量为5.52ng/(kg·d),仅占世界卫生组织(WHO)设定的每日耐受量值的27.6%.PCBs的二 毒性当量(TEQ)平均值为39.4pg/g.  相似文献   

10.
珠江及南海北部海域表层沉积物中多环芳烃分布及来源   总被引:32,自引:13,他引:32  
珠江三角洲河流、河口及南海北部近海区域多环芳烃(PAHs)分析表明,PAHs总量分布范围在255.9~16670.3ng/g,整体污染水平处于中偏低下水平.分布特征为珠三角河流>伶仃洋>南海;珠江广州段是高污染区;沿南海近海海域4条剖面,随离岸距离增加,浓度下降.西江、伶仃洋及珠江部分站点石油污染比重大,南海近海则受燃烧来源比重大.PAHs来源诊断指标表明,珠江三角河流及伶仃洋更多受石化燃料燃烧的影响,南海近海区则主要受木柴、煤燃烧的影响.与1997年样品的对比表明,多环芳烃污染程度无明显下降,但区域内PAHs来源从以煤燃烧为主转变为以油燃烧为主,这种近期能源结构的转变在沉积速率较快的珠三角河流及伶仃洋表层沉积物中得到反映.  相似文献   

11.
太湖北部水体溶解性氨基酸分布特征及其环境意义   总被引:7,自引:0,他引:7       下载免费PDF全文
姚昕  朱广伟  秦伯强 《中国环境科学》2010,30(10):1402-1407
为探讨溶解性氨基酸(DAAs)在太湖水体中作为指示有机质来源及降解特征生物标记物的可能性,对太湖北部不同水域2种分子量级(胶体态:1kDa~0.5mm;真溶解态:<1kDa)的DAAs的空间分布、分子量分布、组成变化及对DOM的相对贡献等方面进行了调查研究.结果表明,太湖水体DAAs大多数以真溶解态存在,平均占DAAs的90%.不同湖区DAAs的含量及分子量组成不同,梅梁湾污染河口区、中心区、湾口区及太湖湖心区DAAs的含量分别为14.5, 34.7, 59.8, 24.0nmol/L,其中真溶解态的比例分别为94%, 88%, 89%及90%. DAAs的空间分布说明太湖的浮游生物内源是太湖DAAs的主要来源.组氨酸、精氨酸、赖氨酸、丝氨酸、酪氨酸是现存的主要氨基酸.氨基酸的成分变化能反映有机质从高分子量向低分子量转变的降解趋势,可作为指示溶解性有机质(DOM)降解的生物标记物.氨基酸碳(AA-C)与溶解性有机碳(DOC)的比值可以作为DOM生物降解性的评价参数,反映湖泊水体中与生物活性相关的DOM动态变化.  相似文献   

12.
黄海和东海海域溶解氧的分布特征   总被引:12,自引:2,他引:12  
根据黄河和东海海区四个季度的调查资料,描述了溶解氧的时空分布和变化规律。黄、东海溶解氧分布的基本特征是北高南低,西高东低,随着水温的变化,不同季节这一差别有所不同。黄、东海溶解氧平均值分别为495.4和420.3μmol/L,测定范围分别为90.2-681.9和133-9-692.8μmol/L。以长江口以东H断面为例,描述了夏季溶解氧的断面分布特征,在20-30m水层出现一氧跃层,30m以下垂直分布比较均匀。文中还深入研究了东海陆架区黑潮水溶解氧的分布特征和变化规律。  相似文献   

13.
渤海东部和黄海北部沉积物中重金属分布特征   总被引:2,自引:0,他引:2  
通过对渤海东部及黄海北部海域138个站位沉积物样品的重金属等含量分析,研究了该海域沉积物重金属元素分布特征及其控制因素.渤海东部及黄海北部海域沉积物中As、Cu、Cd、Cr、Co、Hg、Ni、Pb、V、Zn的平均含量分别为:9.87,20.1,0.15,58.9,11.6,0.02,26.7,23.0,74.0,65.5μg/g;重金属元素Cu、V、Cr、Co、Ni、Zn含量与有机碳含量、小于63μm细粒沉积物呈显著正相关,其在表层沉积物中的分布明显受到有机质含量和沉积物粒径的控制,而As、Hg分布没有明显受到有机质含量和沉积物粒径的影响.富集系数显示, Cr、Co、Ni、Pb、V和Zn为无富集;Cu为轻度富集;As、Cd和Hg为中度富集;依据Q-型聚类分析特征,将研究区域沉积物划分为3个不同的重金属分区,Ⅰ类区沉积物Hg富集程度较高;Ⅱ类区沉积物As富集程度较高;Ⅲ类区重金属元素含量普遍较高,尤其Cu、Zn和Cd含量明显增高.  相似文献   

14.
南海北部陆架海域枪乌贼中的六六六和DDT   总被引:2,自引:0,他引:2  
初步探讨用鱿鱼作指示生物,监测离岸海域六六六(BHC)和滴滴涕(DDT)的污染。结果显示,南海北部陆架海域枪乌贼中BHC和DDT含量远低于国内外残留限量值,BHC含量为(0.0278-0.200)×10-9(湿重,下同),平均为0.101×10-9,在剑尖枪乌贼和中国枪乌贼中略高于杜氏枪乌贼中,稍显珠江口海域>粤西海域>粤东海域>台湾浅滩的区域分布; DDT含量为(0.193-4.74)×10-9,平均为0.941×10-9,在剑尖枪乌贼和杜氏枪乌贼中略高于中国枪乌贼,略呈珠江口>粤西≈粤东>台湾浅滩的分布。γ-BHC/ΣBHC比值为0%-69.8%,平均为18.6%,远低于其在商品BHC中的比值;DDE/ΣDDT比值为0%-67.7%,平均为28.4%,在个别近岸站的比值很低。推测南海北部陆架海域近年没有BHC类污染物输入,但局部可能有DDT类污染物输入。  相似文献   

15.
中国南海CDOM三维荧光光谱特征研究   总被引:19,自引:4,他引:19  
利用三维荧光光谱技术,分析了中国南海有色溶解有机物(CDOM)荧光组分的垂直分布特征.结果表明,中国南海CDOM含有类腐殖质荧光峰M和类蛋白质荧光峰T;CDOM的荧光强度(λEx/λE m:350 nm/450 nm)在表层较低,垂直分布呈现随深度增加而增加,在300 m处达到峰值,然后逐渐下降,在500~600 m间达最小峰值,而后保持相对稳定的分布规律.荧光指数FI均在1.4~2.0间,腐殖化指数HIX值偏低,生物源指数BIX在0.7~1.1之间,T峰为主要贡献者,说明南海CDOM主要为海洋自生来源,受海洋微生物作用过程影响较大.M峰和T峰的荧光强度在垂直分布上具有相似的变化趋势,表层荧光强度都最小,说明南海表层CDOM丰度分布受光降解影响较大.研究表明,南海CDOM的垂直分布受光化学反应、海洋微生物活动及颗粒有机物再矿化的共同影响.  相似文献   

16.
The absorption spectra of chromophoric dissolved organic matter(CDOM),along with general physical,chemical and biological variables,were determined in the Bohai Bay,China,in the springs of 2011 and 2012. The absorption coefficient of CDOM at 350 nm(a350) in surface water ranged from 1.00 to 1.83 m-1(mean: 1.35 m-1) in May 2011 and from 0.78 to 1.92 m-1(mean:1.19 m-1) in April 2012. Little surface-bottom difference was observed due to strong vertical mixing. The a350 was weakly anti-correlated to salinity but positively correlated to chlorophyll a(Chl-a) concentration. A shoulder over 260–290 nm,suggestive of biogenic molecules,superimposed the overall pattern of exponentially decreasing CDOM absorption with wavelength. The wavelength distribution of the absorption spectral slope manifested a pronounced peak at ca. 300 nm characteristic of algal-derived CDOM. All a250/a365 ratios exceeded 6,corresponding to CDOM molecular weights(Mw) of less than 1 kDa. Spectroscopically,CDOM in the Bohai Bay differed substantively from that in the Haihe River,the bay's dominant source of land runoff; photobleaching of the riverine CDOM enlarged the difference.Results point to marine biological production being the principal source of CDOM in the Bohai Bay during the sampling seasons. Relatively low runoff,fast dilution,and selective photodegradation are postulated to be among the overarching elements responsible for the lack of terrigenous CDOM signature in the bay water.  相似文献   

17.
本文采用TPTZ(2,4,6-三吡啶-s-三嗪,C18H12N6)分光光度法,测定了2017年春季南黄海和中国东海海水中的溶解态单糖(MCHO)、多糖(PCHO)及总糖(TCHO)的浓度,对比了南黄海和东海表层海水中MCHO、PCHO和TCHO的浓度分布特征。结果表明,南黄海表层海水中碳水化合物浓度高于东海。通过对南黄海B断面和东海P断面的调查发现,B断面MCHO、PCHO和TCHO分布趋势总体为近岸高、远岸低,表层高、底层低,而P断面由于受到长江冲淡水、台湾暖流和黑潮的综合影响,MCHO、PCHO和TCHO未表现出与B段面相似的分布特征。对E2站位的周日变化观测结果显示,MCHO、PCHO和TCHO的高值主要集中在12:00-18:00时段,低值区段主要集中在4:00-8:00时段,PCHO和TCHO呈线性正相关,MCHO与PCHO没有相关性,但是MCHO的浓度高峰滞后于PCHO的浓度高峰,这可能是由于PCHO被分解,断裂糖苷键释放MCHO所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号