首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

2.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

3.
4.
Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.  相似文献   

5.
Sustainable disposal of municipal solid waste (MSW) requires assurance that contaminant release will be minimized or prevented within a reasonable time frame before the landfill is abandoned so that the risk of contamination release is not passed to future generations. This could be accomplished through waste acceptance criteria such as those established by the European Union (EU) that prohibit land disposal of untreated organic matter. In the EU, mechanical, biological and/or thermal pretreatment of MSW is therefore necessary prior to landfilling which is complicated and costly. In other parts of the world, treatment within highly engineered landfills is under development, known as bioreactor landfills. However, the completed bioreactor landfill still contains material, largely nonbiodegradable carbon and ammonia that may be released to the environment over the long-term. This paper provides a conceptual analysis of an approach to ensure landfill sustainability by the rapid removal of these remaining materials, leachate treatment and recirculation combined with aeration. The analysis in this paper includes a preliminary experimental evaluation using real mature leachate and waste samples, a modeling effort using a simplified mass balance approach and input parameters from real typical bioreactor cases, and a cost estimate for the suggested treatment method.  相似文献   

6.
Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.  相似文献   

7.
Bioreactor landfills: experimental and field results   总被引:28,自引:0,他引:28  
Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation and nutrient balance on the rate of municipal solid waste (MSW) biodegradation. Higher rates of MSW biodegradation eventually cause a reduction of the contaminant life span of the landfill and decrease in the cost of long term monitoring. The study indicated that the smaller the size of the MSW the faster the biodegradation rate of the waste. In addition, the paper presents the results of leachate recirculation on solid waste biodegradation in a full-scale landfill site, which is located in Nepean, Ontario, Canada. The leachate was recirculated into the landfilled solid waste for 8 years through infiltration lagoons. Similar results to those obtained in the laboratory scale experiments were noted. The average pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale, however, the pH value was in the range of 7-8 after 2 years of leachate recirculation. The concentration of chloride remained fairly constant at about 1000 mg/l during the leachate recirculation period. A decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was observed. Recovery of landfill air space was also noted because of the enhanced subsidence and decomposition of the solid waste.  相似文献   

8.
Anammox: an option for ammonium removal in bioreactor landfills   总被引:1,自引:0,他引:1  
Experiments carried out in bioreactor landfill simulators demonstrated that more than 40% of the total N was transferred into the liquid and gas phases during the incubation period of 380 days. Ammonium, an end product of protein degradation and important parameter to consider during landfill closure, tends to accumulate up to inhibitory levels in the leachate of landfills especially in landfills with leachate recirculation. Most efforts to remove ammonium from leachate have been focused on ex situ and partial in situ methods such as nitrification, denitrification and chemical precipitation. Besides minimal contributions from other N-removal processes, Anammox (Anaerobic Ammonium Oxidation) bacteria were found to be active within the simulators. Anammox is considered to be an important contributor to remove N from the solid matrix. However, it was unclear how the necessary nitrite for Anammox metabolism was produced. Moreover, little is known about the nature of residual nitrogen in the waste mass and possible mechanisms to remove it. Intrusion of small quantities of O2 is not only beneficial for the degradation process of municipal solid waste (MSW) in bioreactor landfills but also significant for the development of the Anammox bacteria that contributed to the removal of ammonium. Volatilisation and Anammox activity were the main N removal mechanisms in these pilot-scale simulators. The results of these experiments bring new insights on the behaviour, evolution and fate of nitrogen from solid waste and present the first evidence of the existence of Anammox activity in bioreactor landfill simulators.  相似文献   

9.
The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past decade. Because simulating moisture balance and flow is more critical in such landfills than in dry landfills, researchers have developed methods to address this problem using the hydrologic evaluation of landfill performance (HELP) model. This paper discusses three methods of applying the HELP model to simulate the percolation of liquids added to landfill waste: the leachate recirculation feature (LRF), the subsurface inflow (SSI) feature, and additional rainfall to mimic liquids addition. The LRF is simple to use but may not be able to bring the landfill to bioreactor conditions. The SSI feature provides a convenient user interface for modeling liquids addition to each layer. The additional rainfall feature provides flexibility to the model, allowing users to estimate the leachate generation rate and the leachate head on bottom liner associated with daily variation in the liquids addition rate. Additionally, this paper discusses several issues that may affect the HELP model, such as the time of model simulation, layers of liquids addition, and the limitations of the HELP model itself. Based on the simulation results, it is suggested that the HELP model should be run over an extended period of time after the cessation of liquids addition in order to capture the peak leachate generation rate and the head on the liner (HOL). From the perspectives of leachate generation and the HOL, there are few differences between single-layer injection and multiple-layer injection. This paper also discusses the limitations of using the HELP model for designing and permitting bioreactor landfills.  相似文献   

10.
The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m3 instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.  相似文献   

11.
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis.  相似文献   

12.
Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.  相似文献   

13.
Pilot-scale experiment on anaerobic bioreactor landfills in China   总被引:1,自引:0,他引:1  
Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.  相似文献   

14.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

15.
The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg?1 (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg?1 from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10?8 to 10?7 m s?1 which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg?1, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.  相似文献   

16.
Because effective operation of bioreactor landfills involves careful operation and construction of infrastructure beyond that necessary in traditional landfills, upfront capital and operating costs are greater than those associated with traditional landfills. Prior to investing in bioreactor landfills, landfill owners must be convinced that larger short-term expenses (e.g., liquid and/or air injection infrastructure) will be balanced by future economic benefits (e.g., extension of landfill life, reduced leachate treatment costs, etc.). The purpose of this paper is to describe an economic model developed to evaluate the impact of various operational (anaerobic, aerobic, or hybrid) and construction (retrofit and as-built) bioreactor landfill strategies on project economics. Model results indicate retrofit bioreactor landfills are more expensive than traditional landfills, while both the as-built and aerobic bioreactor landfills are less costly. Simulation results indicate the parameters that influence bioreactor economics most significantly are airspace recovery, gas recovery and subsequent use to generate electricity, and savings resulting from reduced leachate treatment costs.  相似文献   

17.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

18.
Waste settlement in bioreactor landfill models   总被引:2,自引:0,他引:2  
Prediction of landfill settlement is one of the important parameters that affects the design and maintenance of bioreactor landfills. Due to the large number of variables involved in the settlement mechanism, accurate prediction of landfill settlement is a real challenge. The operational protocol of a landfill, the presence of municipal sludge from treatment plants, the addition of soybean peroxidase (SBP) enzymes, and the fraction of organic matter in the municipal solid waste (MSW) have to be reflected in the parameters of any model used to predict the settlement of MSW. In this work, a biodegradation-induced settlement model incorporating two parameters (A and B) was developed. The settlement data of two researchers were used to estimate the parameter values with two different approaches; the first considered the overall experiment and results, and the second separated the aerobic phase, if present, from the anaerobic phase. The rate of initial settlement occurring under aerobic conditions has been greater than that under anaerobic conditions. Parameters increased with the increase in the concentration of enzymes and with the presence of sludge in both aerobic and anaerobic stages. Increasing organic content of MSW has resulted in the enhancement of the biodegradation rate and settlement. This has been reflected on the higher values of the parameters compared to their values in the absence of organic waste.  相似文献   

19.
A newly developed and validated constitutive model that accounts for primary compression and time-dependent mechanical creep and biodegradation is used for parametric study to investigate the effects of model parameters on the predicted settlement of municipal solid waste (MSW) with time. The model enables the prediction of stress strain response and yield surfaces for three components of settlement: primary compression, mechanical creep, and biodegradation. The MSW parameters investigated include compression index, coefficient of earth pressure at-rest, overconsolidation ratio, and biodegradation parameters of MSW. A comparison of the predicted settlements for typical MSW landfill conditions showed significant differences in time-settlement response depending on the selected model input parameters. The effect of lift thickness of MSW on predicted settlement is also investigated. Overall, the study shows that the variation in the model parameters can lead to significantly different results; therefore, the model parameter values should be carefully selected to predict landfill settlements accurately. It is shown that the proposed model captures the time settlement response which is in general agreement with the results obtained from the other two reported models having similar features.  相似文献   

20.
A constitutive model is proposed to describe the stress–strain behavior of municipal solid waste (MSW) under loading using the critical state soil mechanics framework. The modified cam clay model is extended to incorporate the effects of mechanical creep and time dependent biodegradation to calculate total compression under loading. Model parameters are evaluated based on one-dimensional compression and triaxial consolidated undrained test series conducted on three types of MSW: (a) fresh MSW obtained from working phase of a landfill, (b) landfilled waste retrieved from a landfill after 1.5 years of degradation, and (c) synthetic MSW with controlled composition. The model captures the stress–strain and pore water pressure response of these three types of MSW adequately. The model is useful for assessing the deformation and stability of landfills and any post-closure development structures located on landfills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号