首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

2.
The dynamic development of the LNG sector increases the risk of major accidents. Uncontrolled releases of LNG during the processes of manufacturing, distribution, storage, and regasification can pose a serious threat to people, facilities, and the environment. Therefore, an important goal is to determine hazard zones and the extent of potential consequences associated with a release of LNG. The key issue is to estimate these with the least level of uncertainty. The largest part of uncertainty comes from the modeling of LNG release sources and performing dispersion calculations. It is connected with the application of different mathematical models, the adoption of a number of simplifying assumptions, approximations, empirical relations, constants, and a lack of knowledge.This paper proposes a general procedure for calculating the release rate and duration time of the LNG release, pool spreading, vaporization, as well as dispersion, taking into consideration the uncertainty. The procedure consists of two parts. The first part concerns the sensitivity analysis to identify the most uncertain parameters of the LNG source term and dispersion models. The second part applies to two techniques used to include the uncertainty aspects of fuzzy sets and the Monte Carlo method for calculating hazard zones. In order to provide a basis for comparison between these two approaches, the shape of the membership functions used in the fuzzy methods are the same as the shape of the probability density function used in the Monte Carlo simulation. The case study, concerning an LNG release, illustrates the application of the proposed techniques.  相似文献   

3.
The growing demand for natural gas has pushed oil and gas exploration to more isolated and previously untapped regions around the world where construction of LNG processing plants is not always a viable option. The development of FLNG will allow floating plants to be positioned in remote offshore areas and subsequently produce, liquefy, store and offload LNG in the one position. The offloading process from an FLNG platform to a gas tanker can be a high risk operation. It consists of LNG being transferred, in hostile environments, through loading arms or flexible cryogenic hoses into a carrier which then transports the LNG to onshore facilities. During the carrier's offloading process at onshore terminals, it again involves risk that may result in an accident such as collision, leakage and/or grounding. It is therefore critical to assess and monitor all risks associated with the offloading operation. This study is aimed at developing a novel methodology using Bayesian Network (BN) to conduct the dynamic safety analysis for the offloading process of an LNG carrier. It investigates different risk factors associated with LNG offloading procedures in order to predict the probability of undesirable accidents. Dynamic failure assessment using Bayesian theory can estimate the likelihood of the occurrence of an event. It can also estimate the failure probability of the safety system and thereby develop a dynamic failure assessment tool for the offloading process at a particular FLNG plant. The main objectives of this paper are: to understand the LNG offloading process, to identify hazardous events during offloading operation, and to perform failure analysis (modelling) of critical accidents and/or events. Most importantly, it is to evaluate and compare risks. A sensitivity analysis has been performed to validate the risk models and to study the behaviour of the most influential factors. The results have indicated that collision is the most probable accident to occur during the offloading process of an LNG carrier at berth, which may have catastrophic consequences.  相似文献   

4.
5.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

6.
Chemical accidents in the vicinity of densely populated areas can cause colossal damage. Close proximity of chemical facilities to the general public has been identified as a major issue for increased human exposure in 43% of the accidents investigated by the U.S. Chemical Safety Board (CSB). This emphasises the need for incorporating societal factors in risk assessment to plan actions in order to minimise exposure during accidents. The purpose of this research is to develop a model for the assessment of human vulnerability and risk due to chemical accidents. A GIS based methodology is proposed which uses computer aided hazard modelling tools and technical guidelines to model accidents and assesses population vulnerability. The population vulnerability is determined based on a set of societal indicators derived from relevant research work, expert opinions and suggestions by World Bank. Risk is defined as the probable magnitude of harm to humans and dependent on both the degrees of hazard and vulnerability. A case study is carried out by applying the methodology to Meghnaghat Industrial Area in Bangladesh. Accident scenarios are built and hazard modelling software ALOHA is used to spatially display accident footprints. Vulnerability of population is assessed using data from Bangladesh Bureau of Statistics (BBS) and field survey. The hazard footprints and vulnerability map are superimposed using mapping software ArcGIS to generate a composite risk map. The risk map is used to assess existing land use and recommendations are made for future land use planning. The composite risk map is expected to be of help for effective community response, emergency response planning and allocation of medical and support services during emergencies.  相似文献   

7.
Lightning strike is the natural event more frequency causing Natech accidents involving atmospheric storage tanks. Despite the resulting fires have usually limited severity and only local effects, domino effect may cause the escalation of these primary events, possibly affecting nearby pressurized storages and process equipment, thus resulting in relevant increase in the potential area impacted. A methodology was developed for the quantitative assessment of risk due to domino effects caused by Natech accidents triggered by lightning. A comprehensive procedure was obtained, tailoring lightning risk assessment to include probabilistic models for domino escalation based on probit approach and combinatorial analysis. The methodology was applied to a case-study to evidence the shift in risk figures due to domino effect and the credibility of the secondary domino scenarios. The results of the case-study show that an increase up to two orders of magnitude with respect to risk calculated for conventional scenarios is possible when considering lightning-induced Natech primary scenarios and their escalation.  相似文献   

8.
The quantitative risk assessment of industrial facilities is based on integrated procedures to quantify human, environmental and economical losses related to relevant accidents. Accordingly, seismic risk analysis has to be integrated in order to obtain reliable results.In this work, some considerations regarding the intensity and probability of occurrence of earthquakes and the vulnerability of atmospheric storage tanks subjected to seismic actions are given.Structural vulnerability based on observational data has been processed in the form of “probit analysis”, a simple and useful statistic tool. Suggestions concerning industrial seismic-related accidental scenarios are also given.  相似文献   

9.
The article reports the results of different methods of modelling releases and dispersion of dangerous gases or vapours in cases of major accidents from road and rail transportation in urban zones. Transport accidents of dangerous substances are increasingly frequent and can cause serious injuries in densely inhabited areas or pollution of the environment. For quantitative risk assessment and mitigation planning, consequence modelling is necessary.

The modelling of dangerous substance dispersion by standard methods does not fully represent the behaviour of toxic or flammable clouds in obstructed areas such as street canyons. Therefore the predictions from common software packages as ALOHA, EFFECTS, TerEx should be augmented with computational fluid dynamics (CFD) models or physical modelling in aerodynamic tunnels, and further studies are planned to do this.

The goal of this article is to present the results of the first approach of modelling using these standard methods and to demonstrate the importance of the next development stage in the area of transport accident modelling of releases and dispersions of dangerous substances in urban zones in cases of major accident or terrorist attacks.  相似文献   


10.
After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative.  相似文献   

11.
为研究LNG加气站槽车直接供液过程泄漏后果严重程度,采用HAZOP辨识槽车供液和储罐供液典型泄漏场景,基于PHAST分析不同泄漏场景下LNG液池半径、蒸汽云扩散距离及积聚时长、爆炸超压和池火热辐射影响范围,定量评价槽车供液可能造成的事故后果扩大程度.结果表明:槽车供液泄漏事故的LNG液池最大半径、蒸汽云最大扩散距离、爆...  相似文献   

12.
为提高LNG储存的安全性,基于QRA(定量风险评价),利用应急危险定位分析软件分别进行了LNG中小型储罐及大型储槽泄漏事故分析和LNG带压储罐充注压力专项对比分析。结果表明:立式圆柱常压储罐应选择高径比接近于1的罐体而压力罐的选择受高径比的影响很小;当对常压储罐高度有要求时,球形罐是比立式圆柱罐更好的选择;在大型LNG储槽中,常压储槽自身压力很大,可以起到抑制BOG(蒸发气体)产生的作用;在饱和状态下,压力罐的充注压力并非越小越好,需进行针对性分析计算,选取最适合的充注与设计压力。掌握LNG储罐事故后果与罐体形状与类型之间的关系可加强并丰富对其储罐类型选择的认识,可较好的为提高其储存安全性提供数据支撑与理论基础。  相似文献   

13.
It is well known that the domino effect can have a major impact on accidents in storage facilities, as it can increase the consequences of an initial event considerably. However, quantitative risk assessments (QRAs) do not usually take the domino effect into account in a detailed, systematic way, mostly because of its complexity and the difficulties involved in its incorporation. We have developed a simple method to include the domino effect in QRAs of storage facilities, by estimating the frequency with which new accidents will occur due to this phenomenon. The method has been programmed and implemented in two case studies. The results show that it can indeed be used to include the possibility of domino effect occurrence in a QRA. Furthermore, depending on the design of a facility, the domino effect can have a significant effect on the associated risk.  相似文献   

14.
This paper highlights major steps in the procedure for evaluating the consequences of accidents involving dangerous substances, especially during the storage, and loading/unloading activities. The procedure relies on identifying accident scenarios that could be encountered at particular plants, followed by a modelling of these scenarios by means of available modelling systems. Finally, the resultant outcomes are identified, together with their effects on both people and property. The resources needed to perform this procedure are discussed, in order to clarify the roles of plant operators, external experts and other institutions when evaluating any accident consequences. Four examples, all relevant in industrial practice, are given in order to illustrate the procedure: the releasing of liquified petroleum gas, flammable organic solvents, toxic chlorine, and oil fuels. The results of these studies may be used for a quick order-of-magnitude estimation of accidents consequences.  相似文献   

15.
The evaluation of exclusion (hazard) zones around the LNG stations is essential for risk assessment in LNG industry. In this study, computational fluid dynamics (CFD) simulations have been conducted for the two potential hazards, LNG flammable vapor dispersion and LNG pool fire radiation, respectively, to evaluate the exclusion zones. The spatial and temporal distribution of hazard in complex spill scenario has been taken into account in the CFD model. Experimental data from Falcon and Montoir field tests have been used to validate the simulation results. With the valid CFD model, the mitigation of the vapor dispersion with spray water curtains and the pool fire with high expansion foam were investigated. The spray water curtains were studied as a shield to prevent LNG vapor dispersing, and two types of water spray curtain, flat and cone, were analyzed to show their performance for reduction and minimization of the hazard influencing distance and area. The high expansion foam firefighting process was studied with dynamic simulation of the foam action, and the characteristics of the foam action on the reduction of LNG vaporization rate, vapor cloud and flame size as well as the thermal radiation hazard were analyzed and discussed.  相似文献   

16.
Natural disasters such as large earthquakes may rapidly result in cascading events such as post-earthquake fires (PEFs) to trigger. This is particularly the case in industrial facilities which is well known as natural-hazard triggered technological accidents (NaTechs). This study provides a response framework for NaTechs caused by earthquake in fuel storage facilities. To do this, seismic vulnerability of fuel storage tanks and possible damage fashions are studied. Considering fuel leakages can result in PEFs, possible scenarios are simulated numerically using Process Hazard Analysis Software Tool (PHAST). A case study including 20 fuel tanks adjacent one to another is investigated to simulate a domino effect when different arbitrary tanks start to ignite; hence, the worst case scenario can be determined. Based on the results of the case studied, inability to extinguish the possible PEFs over less than 9 min can lead to spreading them to the adjacent tanks. The results indicate that it takes about 40 min the adjacent tanks involve in the fires. Therefore, it is of paramount importance to provide an emergency response plan in advance to properly respond to the fires. The study here also highlights the role of preventive strategies in reducing the associated risks of PEFs in industrial facilities.  相似文献   

17.
A methodology to perform consequence analysis associated with liquefied natural gas (LNG) for a deepwater port (DWP) facility has been presented. Analytical models used to describe the unconfined spill dynamics of LNG are discussed. How to determine the thermal hazard associated with a potential pool fire involving spilled LNG is also presented. Another hazard associated with potential releases of LNG is the dispersion of the LNG vapor. An approach using computational fluid dynamics tools (CFD) is presented. The CFD dispersion methodology is benchmarked against available test data. Using the proposed analysis approach provides estimates of hazard zones associated with newly proposed LNG deepwater ports and their potential impact to the public.  相似文献   

18.
Land use planning (LUP) around industrial sites at risk of major accidents requires the application of sound approaches in the selection of credible accident scenarios. In fact, the ‘technical’ phase of LUP is based on the identification and assessment of relevant accident scenarios. An improper choice of scenarios may critically affect both the ‘technical’ phase of risk assessment and the following ‘policy’ phase concerning decision making on land-use restrictions and/or licensing. The present study introduces a procedure aimed at the systematic identification of reference accident scenarios to be used in the gathering of technical data on potential major accidents, which is a necessary step for LUP around Seveso sites. Possible accident scenarios are generated by an improved version of the MIMAH methodology (Methodology for the Identification of Major Accident Hazards). The accident scenarios are then assessed for LUP relevance considering severity, frequency and time scale criteria. The influence of prevention and mitigation barriers is also taken into account. Two applications are used to demonstrate the proposed procedure. In both case-studies, the proposed methodology proved successful in producing consistent sets of reference scenarios.  相似文献   

19.
盐穴地下储气库事故统计及风险分析   总被引:3,自引:1,他引:2  
借鉴输气管道和二氧化碳地下封存设施的风险评价方法,结合盐穴地下储气库的事故统计分析,对储气库系统中的潜在风险因素进行12大类、35小类的初步分类,并归纳总结了盐穴地下储气库的3种主要事故类型。采用事故树分析的风险评价方法,对13种主要风险因素进行风险识别。在此基础上,提出定量风险评价的重要工程模型,其包括气体水合物模型、盐穴稳定性评价模型以及气体泄漏模型。该风险分析方法和工程模型有助于定量评价盐穴地下储气库的主要风险因素,为储库的安全稳定运行提供了科学依据。  相似文献   

20.
Interactions between natural events and industrial installations may lead to dangerous phenomena. According to bibliographical research, the industrial sector is often unprepared for these joint natural and technological or Natech events mainly because of the lack of guidelines on how to apply Natech regulations and the lack of information on the dynamics of Natechs. In order to fill the gaps and provide guidance on Natech risk assessment to operators, a systematic risk analysis methodology was developed and resulted firstly in proposing general reference bow-ties that reconfigure accidental scenarios triggered by flood events. The validation of these scenarios was made in the surface treatment sector. Building on these bow-ties, the risk analysis methodology will be completed and a checklist simple to use, along with a list proposing preventive and protective measures, to be used by operators in order to decrease the vulnerability of their industrial facilities to technological accidents triggered by floods will be developed in future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号