首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Successful biodiversity conservation requires high quality monitoring data and analyses to ensure scientifically defensible policy, legislation, and management. Although monitoring is a critical component in assessing population status and trends, many governmental and non-governmental organizations struggle to develop and implement effective sampling protocols and statistical analyses because of the magnitude and diversity of species in conservation concern. In this article we describe a practical and sophisticated data collection and analysis framework for developing a comprehensive wildlife monitoring program that includes multi-species inventory techniques and community-level hierarchical modeling. Compared to monitoring many species individually, the multi-species approach allows for improved estimates of individual species occurrences, including rare species, and an increased understanding of the aggregated response of a community to landscape and habitat heterogeneity. We demonstrate the benefits and practicality of this approach to address challenges associated with monitoring in the context of US state agencies that are legislatively required to monitor and protect species in greatest conservation need. We believe this approach will be useful to regional, national, and international organizations interested in assessing the status of both common and rare species.  相似文献   

2.
ABSTRACT: The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.  相似文献   

3.
Abstract: Conservation practices are regularly implemented within agricultural watersheds throughout the United States without evaluating their ecological impacts. Impact assessments documenting how habitat and aquatic biota within streams respond to these practices are needed for evaluating the effects of conservation practices. Numerous sampling protocols have been developed for monitoring streams. However, protocols designed for monitoring studies are not appropriate for impact assessments. We developed guiding principles for designing impact assessments of ecological responses to conservation practices. The guiding principles are as follows: (1) develop the hypothesis first, (2) use replicated experimental designs having controls and treatments, (3) assess the habitat and biological characteristics with quantitative and repeatable sampling methods, (4) use multiple sampling techniques for collecting aquatic organisms, and (5) standardize sampling efforts for aquatic organisms. The guiding principles were applied in designing a study intended to evaluate the influence of herbaceous riparian buffers on channelized headwater streams in central Ohio. Our example highlights that the application of our recommendations will result in impact assessments that are hypothesis‐driven and incorporate quantitative methods for the measurement of abiotic and biotic attributes.  相似文献   

4.
ABSTRACT: A subwatershed base map of 84 hydrologic subregions within the Columbia River Basin (approximately 58,361,000 ha) was developed following hierarchical principles of ecological unit mapping. Our primary objectives were to inspect the relations between direct and indirect biophysical variables in the prediction of valley bottom and stream type patterns, and to identify hydrologic subregions (based on these results) that had similar aquatic patterns for which consistent management practices could be applied. Realization of these objectives required: (1) stratified subsampling of valley bottom and stream type composition within selected sub‐watersheds, (2) identification of direct and indirect biophysical variables that were mappable across the basin and that exerted primary control on the distribution of sampled aquatic patterns, and (3) development of hydrologic subregion maps based on the primary biophysical variables identified. Canonical correspondence analysis indicated that a core set of 15 direct variables (e.g., average watershed slope, drainage density, ten‐year peak flow) and 19 indirect variables (i.e., nine subsection groups, four lithology groups, and six potential vegetation settings) accounted for 31 and 30 percent (respectively) of valley bottom/stream type composition variability and 84 and 80 percent (respectively) of valley bottom/stream type environmental variability within subsamples. The 19 indirect biophysical variables identified were used to produce an ecological unit classification of 7,462 subwatersheds within the basin by a hierarchical agglomerative clustering technique (i.e., hydrologic subregions were identified). Discriminant analysis indicated that 13 direct biophysical variables could correctly assign 80 percent of the subwatersheds to their indirect biophysical classification, thus demonstrating the strong relation that exists between indirect biophysical based classifications (ecological units) and the direct biophysical variables that determine finer‐level aquatic patterns. Our hydrologic subregion classifications were also effective in explaining observed differences in management hazard ratings across all subwatersheds of the basin. Results of this research indicate that ecological units can be effectively used to produce watershed classifications that integrate the effects of direct biophysical variables on finer‐level aquatic patterns, and predict opportunities and limitations for management.  相似文献   

5.
Water resources are increasingly impacted by growing human populations, land use, and climate changes, and complex interactions among biophysical processes. In an effort to better understand these factors in semiarid northern Utah, United States, we created a real‐time observatory consisting of sensors deployed at aquatic and terrestrial stations to monitor water quality, water inputs, and outputs along mountain to urban gradients. The Gradients Along Mountain to Urban Transitions (GAMUT) monitoring network spans three watersheds with similar climates and streams fed by mountain winter‐derived precipitation, but that differ in urbanization level, land use, and biophysical characteristics. The aquatic monitoring stations in the GAMUT network include sensors to measure chemical (dissolved oxygen, specific conductance, pH, nitrate, and dissolved organic matter), physical (stage, temperature, and turbidity), and biological components (chlorophyll‐a and phycocyanin). We present the logistics of designing, implementing, and maintaining the network; quality assurance and control of numerous, large datasets; and data acquisition, dissemination, and visualization. Data from GAMUT reveal spatial differences in water quality due to urbanization and built infrastructure; capture rapid temporal changes in water quality due to anthropogenic activity; and identify changes in biological structure, each of which are demonstrated via case study datasets.  相似文献   

6.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

7.
Mountain landscapes are undergoing rapid land-use changes. Settlement expansion, the intensification of agricultural land-use practices, and farmland abandonment result in a decline of natural and semi-natural habitats and the related ecosystem services (ES). In this context, spatial planning has emerged as a key instrument for the management of ES provision. To better understand trade-offs and interactions between settlement growth and ES provision in a spatially explicit manner, we present a new modeling framework coupling an agent-based, agro-economic optimization model and a cellular-automata-based settlement growth model. The framework is applied in an inner alpine valley in the Valais, Switzerland, which experienced rapid settlement growth in recent years. Results demonstrate how the model framework allows support of local planning processes. Particularly cooperation among municipalities and an explicit consideration of ES can inform spatially explicit ES trade-off decisions under increasing demand for land. We conclude that better informed spatial planning processes support ES provision.  相似文献   

8.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   

9.
Creating a habitat classification and mapping system for marine and coastal ecosystems is a daunting challenge due to the complex array of habitats that shift on various spatial and temporal scales. To meet this challenge, several countries have, or are developing, national classification systems and mapping protocols for marine habitats. To be effectively applied by scientists and managers it is essential that classification systems be comprehensive and incorporate pertinent physical, geological, biological, and anthropogenic habitat characteristics. Current systems tend to provide over-simplified conceptual structures that do not capture biological habitat complexity, marginalize anthropogenic features, and remain largely untested at finer scales. We propose a multi-scale hierarchical framework with a particular focus on finer scale habitat classification levels and conceptual schematics to guide habitat studies and management decisions. A case study using published data is included to compare the proposed framework with existing schemes. The example demonstrates how the proposed framework’s inclusion of user-defined variables, a combined top-down and bottom-up approach, and multi-scale hierarchical organization can facilitate examination of marine habitats and inform management decisions.  相似文献   

10.
Monitoring is essential to track the long-term recovery of endangered species. Greater emphasis on habitat monitoring is especially important for taxa whose populations may be difficult to quantify (e.g., insects) or when true recovery (delisting) requires continuous species-specific habitat management. In this paper, we outline and implement a standardized framework to facilitate the integration of habitat monitoring with species recovery efforts. The framework has five parts: (1) identify appropriate sample units, (2) select measurable indicators of habitat requirements, (3) determine rating categories for these indicators, (4) design and implement appropriate data collection protocols, and (5) synthesize the ratings into an overall measure of habitat potential. Following these steps, we developed a set of recovery criteria to estimate habitat potential and initially assess restoration activities in the context of recovering an endangered insect, the Karner blue butterfly (Lycaeides melissa samuelis). We recommend basing the habitat potential grading scheme on recovery plan criteria, the latest information on species biology, and working hypotheses as needed. The habitat-based assessment framework helps to identify which recovery areas and habitat patches are worth investing in and what type of site-specific restoration work is needed. We propose that the transparency and decision-making process in endangered insect recovery efforts could be improved through adaptive management that explicitly identifies and tracks progress toward habitat objectives and ultimate population recovery.  相似文献   

11.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

12.
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models.  相似文献   

13.
The Land Condition Trend Analysis (LCTA) program is the US Army's standard for land inventory and monitoring, employing standardized methods of natural resources data collection, analyses, and reporting designed to meet multiple goals and objectives. Critical to using LCTA data in natural resources management decisions is the ability of the LCTA protocols to detect changes in natural resources. To quantify the ability of LCTA protocols to detect resource changes, power analysis techniques were used to estimate minimum detectable effect sizes (MDES) for selected primary and secondary management variables for three Army installations. MDES for a subset of primary variables were estimated using data from 27 installation LCTA programs. MDES for primary and secondary variables varied widely. However, LCTA programs implemented at larger installations with lower sampling intensities detected changes in installation resources as well as programs implemented at smaller more intensively sampled installations. As a national monitoring program that is implemented at individual installations, LCTA protocols provide relatively consistent monitoring data to detect changes in resources despite diverse resource characteristics and implementation constraints.  相似文献   

14.
ABSTRACT: A continuous simulation approach is proposed for estimating water temperature exceedance probabilities using thermo-hydrodynamic modeling. The approach uses (1) a deterministic unsteady flow and heat transport model, (2) continuous hydrological and meteorological data for a long historical period, and (3) synthetic records of tributary water temperatures and other model inputs. Representative historical records of streamflow, air temperatures, and other hydrometeorological variables are obtained from nearby gages. Stochastic modeling methods are used to construct synthetic records for other model inputs, including inflow water temperatures. An application of this deterministic-stochastic approach is presented for a complex waterway in northeastern Illinois with heat discharges from several power plants and wastewater treatment plants. Statistical results from the continuous simulations are compared to results obtained from traditional event simulations. The application illustrates the information that engineers and biologists can obtain for (1) evaluating compliance with water temperature standards, and (2) assessing the effect of water temperatures on aquatic habitat.  相似文献   

15.
Inland water bodies are considered as integrated parts of the landscape and the monitoring of water quality and aquatic resources need to be addressed on a regional basis for optimal assessment and management. In this study, a simple stratified sampling scheme was applied to a mesoscale survey of western and northwestern Irish lakes, which was carried out to identify, based on the distribution patterns of phytoplankton biomass, potential associations between lake trophic state and land cover attributes. Phytoplankton community analysis was also performed to determine whether taxa associations reflected meteorology-linked aestival succession or specific spatial distributions. The assessment was based on the typology of hydrogeomorphological and land cover attributes of river catchments through ArcGIS analysis. Sampling was carried out in 50 lakes and during a 15-week period in summer 2009. Results showed a general longitudinal gradient in the trophic status of the lakes sampled, with a greater frequency of mesotrophic lakes in the eastern part of the study area where land cover is dominated by agricultural surfaces. Significant relationships (p < 0.010) were found between chlorophyll-a concentration and the proportion of river catchment surface covered by agriculture land and wetlands, findings which might be considered further as proxies for developing an eutrophication risk index. Multivariate analysis of phytoplankton community data clustered the sampled lakes into three assemblages, with ordination along axis 1 being significantly correlated to time and temperature (p < 0.006). There was greater frequency of occurrence of diatoms in lakes from cluster III (Kruskal–Wallis, p < 0.05, H = 6.34, df = 2, n = 49), concomitant to lower chlorophyll-a concentrations, lake surface temperatures and Secchi depths, reflecting meteorological conditions dominated by precipitations. Those results support the potential of mesoscale surveys to assess water quality variables and detect environmental patterns at regional scales.  相似文献   

16.
ABSTRACT: Regulatory water quality monitoring has evolved to the point where it is a rather complex system encompassing many monitoring purposes and involving many monitoring activities. Lack of a system's perspective of regulatory monitoring hinders the development of effective and efficient monitoring programs to support water quality management. In this paper the regulatory water quality monitoring system is examined in a total systems context. The purposes of regulatory monitoring are reviewed and categorized according to their legal evolution. The activities of regulatory monitoring are categorized and organized into a system which follows the flow of information through the monitoring program. The monitoring purposes and activities are combined to form a monitoring system matrix - a framework within which the total regulatory water quality monitoring system is defined. The matrix, by defining the regulatory monitoring system and clarifying many interactions within the system, provides a basis upon which a more thorough approach to managing, evaluating, and eventually optimizing regulatory monitoring can be developed.  相似文献   

17.
Bioregional classifications are used extensively for conservation management and monitoring programs. This study used generalised dissimilarity modelling (GDM) to test the ability of different regional classifications of four groups of aquatic biota to be used as surrogates for each other. Classifications were derived for aquatic macrophytes, macroinvertebrates, freshwater fish and frogs using community-level modelling, or GDM, which relates the biotic assemblage structure with environmental variables. Six regions were defined for each biotic group for the State of New South Wales. Regional classifications differed markedly between the different biotic groups because the environmental drivers that were related to species turnover throughout the region differed among groups. Altitude and rainfall were the strongest drivers of species turnover among the groups. Results suggest that physiographic variables should be incorporated in reserve design and monitoring programs to explicitly address differences in classifications between similar biotic groups.  相似文献   

18.
We developed an approach for inventorying wetland resources, assessing their condition, and determining restoration potential in a watershed context. This article outlines how this approach can be developed into a Wetland Monitoring Matrix (WMM) that can help resource management agencies make regulatory and nonregulatory decisions. The WMM can be embedded in a standard planning process (Wetlands, Wildlife, and Watershed Assessment Techniques for Evaluation and Restoration, or W3ATER) involving the setting of objectives, assessing the condition of the resource, prioritizing watersheds or sites, implementing projects, and evaluating progress. To that process we have added the concepts of reference, hydrogeomorphic (HGM) classification, and prioritization for protection and restoration by triage or adaptive management. Three levels of effort are possible, increasing in detail and diagnostic reliability as data collection shifts from remote sensing to intensive sampling on the ground. Of key importance is the use of a consistent set of monitoring protocols for conducting condition assessments, designing restoration and creation projects, and evaluating the performance of mitigation projects; the same variables are measured regardless of the intended use of the data. This approach can be tailored to any region by establishing a reference set of wetlands organized by HGM subclasses, prioritizing watersheds and individual wetlands, and implementing consistent monitoring protocols. Application of the approach is illustrated with examples from wetlands and streams of the Spring Creek Watershed in central Pennsylvania, USA.  相似文献   

19.
Assessment of aquatic macroinvertebrates is a critical component of many watershed monitoring programs and passive samplers are often used to collect long-term site data, especially in environments where active sampling is not possible. However, standard passive samplers can be expensive and lost in extreme conditions. We developed a sampler using plastic soda bottles (PSB) filled with river rock and compared its effectiveness with standard Hester-Dendy samplers in both lotic and lentic environments. Abundance, taxa richness, and macroinvertebrate composition showed no significant differences between sampler types in either habitat type. PSB samplers, which can be constructed for less than one dollar each, collected the same number of organisms and represented the same diversity as Hester-Dendy devices that cost around $38 each. In studies where funds are limited, PSB samplers appear to be suitable for passive monitoring.  相似文献   

20.
ABSTRACT: We suggest that a diagnostic procedure, not unlike that followed in medical practice, provides a logical basis for stream channel assessment and monitoring. Our argument is based on the observation that a particular indicator or measurement of stream channel condition can mean different things depending upon the local geomorphic context and history of the channel in question. This paper offers a conceptual framework for diagnosing channel condition, evaluating channel response, and developing channel monitoring programs. The proposed diagnostic framework assesses reach‐level channel conditions as a function of location in the channel network, regional and local biogeomorphic context, controlling influences such as sediment supply and transport capacity, riparian vegetation, the supply of in‐channel flow obstructions, and disturbance history. Field assessments of key valley bottom and active channel characteristics are needed to formulate an accurate diagnosis of channel conditions. A similar approach and level of understanding is needed to design effective monitoring programs, as stream type and channel state greatly affect the type and magnitude of channel response to changes in discharge and sediment loads. General predictions are made for five channel types with respect to the response of various stream characteristics to an increase in coarse sediment inputs, fine sediment inputs, and the size and frequency of peak flows, respectively. These predictions provide general hypotheses and guidance for channel assessment and monitoring. However, the formulation of specific diagnostic criteria and monitoring protocols must be tailored to specific geographic areas because of the variability in the controls on channel condition within river basins and between regions. The diagnostic approach to channel assessment and monitoring requires a relatively high level of training and experience, but proper application should result in useful interpretation of channel conditions and response potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号