首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Boilover is a phenomenon that both stakeholders and fire-fighters in the petrochemical industry try to avoid. This phenomenon results in an explosion of liquid hydrocarbon materials (e.g., crude oil) due to prolonged oil tank fires. The elevated temperature provides energy to vaporize the water sub-layer, which commonly resides at bottom of storage tanks, leading to tremendous fire enlargement as fuel tends to spill over around the tank. Boilover follows the formation of an isothermal layer called ‘hot zone’, and is typically accompanied by continuing bubble appearance in the hot zone. Previous studies have suggested that bubble generation could be a driving force for boilover, as it accelerates heat mixing. However, the effect of bubble generation on the mechanism of hot zone formation has not yet been systematically studied. This work investigates the effect of bubble formation on hot zone formation by installing a metal mesh in a burning fuel container. The size of the mesh grid and the position of the mesh are varied to generate bubbles with different volumes from different depths from the fuel surface. Experimental results demonstrate that the metal mesh definitely increases the volume of bubbles, and significantly reduces the time to form a hot zone. The mesh with small grids generates more bubbles than that with large grids. Additionally, bubbles start to generate earlier when the mesh is fixed nearer the fuel surface. Experimental results provide direct evidence of the bubble effect on hot zone formation.  相似文献   

2.
原油储罐火灾扬沸形成时间预测模型研究   总被引:2,自引:1,他引:1  
扬沸火灾是一种突变性火害现象,其发生能导致巨大的人员伤亡和财产损失,其形成时间预测问题一直备受关注。根据能量守恒定律,把原油层内的热量传递看作无内热源、常物性的非稳态传热问题,建晓热量传递模型,通过预测油层内的温度分布,结合小尺度油罐扬沸火灾实验结果,推导出扬沸形成时间预测模型。并对其可靠性进行了案例验证,结果表明模型准确,误筹较小。实验发现随着罐径的增大,水层厚度对扬沸形成时间的影响逐渐减小。通过预测模型计算得到:扬沸形成时间与初始油层厚度和罐径的比值存在正比例关系。  相似文献   

3.
Now in Russian Federation and other countries large-scale oil terminals (volume of one tank exceeds 100 000 m3, total volume of tanks exceeds 300 000 m3) are designed and constructed. Therefore fire safety of such objects becomes a very important task, solution of which is hardly possible without detail fire risk assessment. This study is aimed to a solution of this problem. Potential, individual and social risks were calculated. The potential risk was defined as a frequency of occurrence of hazardous factors of fires and explosions in a given point of space (the so-called risk contours). The individual risk was defined as a frequency of injuring a given person by hazardous factors of fires and explosions. Time of presence of this person in hazardous zones (near the hazardous installation) is taken into account during calculations of the individual risk. Social risk was defined as a dependence of frequency of injuring a given number of people by hazardous factors of fires and explosions on this number. In practice the social risk is usually determined on injuring not less than 10 people.

The oil terminal under consideration includes the following main parts: crude oil storage consisting of three tanks of volume 100 000 m3 each, input crude oil pipeline of diameter 0.6 m, crude oil pumps, output crude oil pipeline of diameter 0.8 m, auxiliary buildings and facilities. The following main scenarios of tank fires have been considered: rim seal fire, pool fire on a surface of a floating roof, pool fire on a total cross-section surface of the tank, pool fire in a dyke, explosions in closed or semiclosed volumes. Fires and explosions in other parts of the terminal are also taken into account. Effects of escalation of accidents are considered.

Risk contours have been calculated both for the territory of the terminal and for the neighbouring space. The potential risk for the storage zone is near 10−4–10−5 year−1, and at a distance 500 m from the terminal the potential risk values do not exceed 10−6 year−1. The values of the individual risk for various categories of workers are in the range of 10−5–10−6 year−1. Because of low number of the workers on the terminal and large distances to towns and villages the social risk value is negligible. These risk values are consistent with practice of the best oil companies, and fire hazard level of the terminal can be accepted as tolerable.  相似文献   


4.
Experimental studies of boilover were conducted in small scale rig at Universiti Teknologi PETRONAS (UTP), Malaysia and Loughborough University, United Kingdom. The study at UTP was aimed to demonstrate the ability of conducting tests at a smaller scale to simulate the boilover phenomenon. At Loughborough University, a novel laboratory scale rig was designed and built in order to obtain visual records of fuels' behaviour in a pool fire. The ultimate objective of these studies is to develop a greater understanding of boilover pertaining to fires involving the contents of storage tanks. Fuel mixtures containing light and heavy components were burnt as to study the feasibility of reproducing hot zone formation and boilover in a smaller scale and a safe environment. Boilover occurred after certain period of burning. It is found that thickness of the hot zone changed with time. It is also found that the time needed to start boilover increased when fuel thickness increased. The visualization of the fuel behaviour during the experiments was obtained to better understand the formation and growth of hot zone, the boiling of water layer and hence the boilover occurrence. Based on the data analysis and the photographs recorded from the experiments, the laboratory scale experimental rig could be used to simulate the hot zone formation mechanism and the boilover event safely and successfully. Such information are important for the understanding towards boilover phenomenon.  相似文献   

5.
为满足我国各地原油储备及周转需要,油田企业建设有大型原油储罐。部分储罐随着服役年数的增加,出现由于储罐地基的不均匀沉降而导致的罐壁变形,进而浮盘不能自由升降的现象。通过对储罐基础实测沉降数据建立储罐有限元模型,由计算结果分析研究基础沉降储罐的结构响应,并提出该储罐的安全运行液位,可为使用年限较久的储罐的安全评估提供一定的指导。  相似文献   

6.
石凯  姚斌  江梦梦  舒雅 《火灾科学》2012,21(2):98-103
光纤光栅感温火灾报警系统在石油化工行业储罐区等易燃易爆场所得到应用,但目前尚没有相关的国家级设计规范,且安徽省和湖北省地方设计规范关于感温探测器敷设间距的要求存在较大差异,有必要开展深入研究。以外浮顶原油罐为例进行研究,获得了差温和定温两种探测方式在两种敷设高度下,其敷设间距与罐径之间的关系表达式,二者呈正相关。研究结果表明,初起阶段火源功率与罐径呈线性关系且火源功率较小,按照地方规范设置敷设间距时,难以对其进行及时探测,应加大敷设密度;差温探测比定温探测方式具有更为快速探测报警优势且可以设置较大的敷设间距。  相似文献   

7.
随着我国经济的飞速发展,国内储油罐趋向大型化发展。大型储罐具有节约钢材、占地少、投资低、便于操作管理等优点。油罐内储存的各种油品一般都具有易挥发、易流失、易燃烧、易爆炸等性质,一旦发生火灾,就会造成重大的经济损失。而且油罐火灾损失巨大,难以扑救,所以说油罐的安全已成为石油化工行业的焦点。针对大型浮顶油罐的危险性,对大量的事故案例进行了分析。在此基础上,提出了强调使用二次密封技术,设计、施工和管理上加强浮船与罐壁之间的密封,安装火灾报警和自动泡沫灭火系统,重视中央排水叠管的密封性及油罐基础的稳定性等安全对策措施。  相似文献   

8.
马平川  丁超  林潇  汪箭 《火灾科学》2021,30(1):16-23
扬沸是油池火灾的一种特殊现象,燃料和垫水层交界面的过热温度和沸腾状态是决定扬沸是否发生以及发生时间的最主要因素,过热温度由沸点决定。在垫水层中添加氯化钠能够改变垫水层的沸点,从而改变交界面的过热温度。在垫水层添加氯化钠使其成为饱和氯化钠水溶液,对此条件下的油池火燃烧进行实验探究,以验证前人关于扬沸临界条件的研究结果,并为扬沸防治提供思路。垫水层改变为饱和氯化钠溶液后,柴油实验组均没有发生扬沸,且观察到火焰温度和热辐射强度的下降。表明此方法可以有效抑制扬沸的发生。  相似文献   

9.
对比研究长距离输煤管道储浆罐与石油储罐搅拌设计特点、罐顶设计特点、消防安全设施特点。经分析可知,长距离输煤管道储浆罐宜选用推进式搅拌器,罐壁上设置导流结构,宜采用固定顶、锥顶,设置简单消防安全设施,宜选用难燃保温材料;石油储罐优先选用旋转喷射式搅拌器,罐内油品进行定期搅拌,采用浮顶,大型的一般选用外浮顶,需设置完善消防安全设施。  相似文献   

10.
李新川 《安全》2019,40(1):34-36
国内储罐火灾爆炸事故时有发生,储罐消防冷却系统实施有效的冷却是控制火势和扑救初期火灾的主要因素之一。为了研究油罐消防喷淋系统在灭后冷却中的影响,本文选取4座5×10~3内浮顶罐组,开展消防冷却水系统喷洒实验,通过测试分析发现:实际的冷却水供给强度不满足规范的要求,并探讨了储罐固定冷却水系统供给强度不足的原因,结合分析的原因建议对规范中着火罐和临近罐供水强度要求统一均为2.5 L/(min·m^2),其冷却水喷淋圈管设置应为四段以上。  相似文献   

11.
分析了密封圈火灾过程及特点,建立了压缩空气泡沫灭火试验装置,参照10×10~4m~3浮顶储罐建立了20 m长的密封圈试验装置,以汽油为介质开展了多次泡沫灭火试验。试验结果表明:该压缩空气泡沫灭火试验装置可在30 s内完成灭火,泡沫混合液供给强度约14~19 L/(min·m~2),具有在大型浮顶储罐上应用的可能性。针对单台10×10~4m~3浮顶储罐浮盘密封圈灭火提出了工程应用方案,该储罐共需泡沫液量1200 L,分为4套压缩空气泡沫灭火装置均匀分布在浮盘边缘,浮盘密封圈火灾报警系统与该泡沫灭火装置联锁启动自动灭火,各套灭火装置的持续喷射时间约1 min。  相似文献   

12.
大型原油储罐储量很大,潜在危险性高,一旦发生事故,损失将十分惨重。为此,在分析了大型原油储罐工程危险性的基础上,重点论述了大型原油储罐设计中的主要安全问题及其对策,包括储罐地基和基础、浮顶储罐密封装置、信号报警联锁系统、排水设计、防腐蚀措施等,特别针对大型原油储罐的特点,详细讨论了浮盘沉底事故原因并介绍了预防浮盘沉底的设计要求,为工程设计提供了有价值的参考依据。  相似文献   

13.
大型原油商业储备油库火灾危险性数值模拟分析   总被引:3,自引:1,他引:2       下载免费PDF全文
石油储备油库多向大型化、复杂化方向发展,发生事故时扑救非常困难。为了深入探讨巨型油罐火灾发展趋势与规律、事故危害后果,结合宁夏惠安堡原油商业储备油库这一工程实例,采用基于大涡模拟的FDS模型作为模拟计算平台,对巨型油罐火灾的燃烧过程进行数值模拟计算。通过分析计算,得到烟气分布、温度分布、热辐射强度分布等火灾过程参数的变化趋势,以及在有风和无风状态下着火罐对相邻油罐的影响,探讨现行建设工程消防技术标准就储罐防火间距、火灾时对邻近罐体冷却设计要求运用于巨型储油罐时的消防安全状况,为巨型储油罐消防安全科学合理设计提供理论依据。  相似文献   

14.
Boilover is defined as a violent ejection of fuel due to the vaporization of a water sub-layer, resulting in an enormous fire enlargement and formation of fireball and ground fire. This paper focuses on the physical principles behind the thin-layer boilover phenomenon, and on the improvement of the thin-layer boilover modeling. Small scale field and laboratory experiments, with a mixture of diesel and oil, and reservoirs ranging from 0.08 to 0.3 m, have been performed. High-speed visualizations and image processing, in parallel to temperature and mass loss measurements allows to better understand the water boiling, and the consequent flame enlargement. The modeling of the boilover period is done through the calculation of the pre-boilover burnt mass ratio and the boilover intensity based on the mass loss and on the flame enlargement.  相似文献   

15.
针对大型浮顶罐区火灾事故风险特征,通过对火灾场景辨识及其火灾风险影响因素分析,结合预防初期火灾场景风险要素和消防系统有效性,提出了罐区火灾事故现实风险的评估框架及确定方法。在此基础上,构建了基于火灾场景的全过程风险防范体系,包括库区评估规划、罐体本质安全化设计、库区火灾预防、罐区火灾扑救、园区火灾事故管理等5个方面,并给出相应的对策措施。大型浮顶罐区全过程火灾风险防范是一个持续改进的结构化过程风险管理体系,有助于实现罐区火灾风险的过程安全管理,进而提高仓储型园区的整体消防安全保障能力和风险防控水平。  相似文献   

16.
Light hydrocarbons vaporize to the space between crude oil interface and roof of the storage tank during loading of crude oil tankers in marine oil terminals. When crude oil is loaded to the tank, these hydrocarbons are vented into the atmosphere which is considered as a main source of emission of volatile organic compounds (VOCs) in oil terminals. VOCs emitted from the crude oil not only create severe air pollution problems but also a considerable amount of valuable hydrocarbons are wasted to the atmosphere. On the other hand, VOCs are flammable which create major safety hazards to the loading process. Therefore, the oil industry has largely focused on control of VOCs. In this research, an experimental study was conducted to characterize VOCs emitted from storage tanks of crude oil in a large-scale oil export terminal. Using the industrial data and simple mathematical tools, effect of different parameters on the composition of emitted gases was investigated. Furthermore, an experimental procedure is proposed to assess the potential of a crude oil absorption process for recovering emitted gases. Experimental results showed that the crude oil absorption process can be adapted to the situation of considered marine terminal for recovering this vent stream of emitted gases. This work can help plant engineers to decide on an appropriate strategy to control VOCs.  相似文献   

17.
大型外浮顶储罐多次发生雷击起火事故,因此对其安全性做出客观评价,计算雷击起火概率现实意义重大。通过分析雷电对外浮顶油罐的危害方式,利用蒙特卡洛方法结合电气几何模型计算外浮顶油罐年雷击率。分析采用导静电线和可伸缩接地装置(RGA)的防护效果差别。最后计算安装可伸缩接地装置后油罐遭受雷击产生火花放电的年事故率。计算结果表明:年雷击率随着油罐直径和罐壁高度的增大而增加;采用可伸缩接地装置的防护效果明显优于传统导静电线;安装多个可伸缩接地装置可以明显降低产生火花的概率和年事故率。两个RGA就可以将油罐遭受雷击产生火花放电的年事故率降至10-5以下。  相似文献   

18.
为有效预警原油储备区储罐气体泄漏,制定气体探测器布置优化方案,以某大型原油站库为例,基于CFD法和FLACS软件模拟原油泄漏及可燃蒸汽云溢散分布,通过分析蒸汽云扩散规律,实现全方位气体探测器优化布置.结果表明:原油储罐区探测器分别布置在区块21-2、6-1、31-1、40-2,且每个罐组总计布置16处;优化设置方案可满...  相似文献   

19.
根据我国大型浮顶储罐的特点,分析浮盘密封圈内油气的形成和集聚过程,总结浮盘密封圈在运行中出现的问题;指出密封圈内的油气挥发是气液相动态平衡的过程,当前浮盘密封圈的主要缺陷是密封圈内油气空间较大和在运行中无法保证有效密封;消除密封圈内原油的气液相界面是抑制密封圈内原油挥发的根本,减少风、气温变化等外界因素对密封圈内原油挥发的影响是降低密封圈内油气浓度的关键;消除密封圈内部的油气空间、消除密封圈内可能存在的放电点、增强密封结构的稳定性是密封圈结构优化的主要途径。  相似文献   

20.
Aboveground steel storage tanks are widely utilized in industrial areas such as oil refineries, petrochemical complexes, oil depots, and etc. Assurance of these infrastructure facilities in high seismic areas is a very important engineering consideration. High amplitude fluid sloshing is one of the widespread causes of steel oil storage tanks during strong earthquakes addressed as an important failure mode. This phenomenon generates additional forces impacting the wall and roof of the tanks. Annular baffles can be used as slosh damping devises to control liquid sloshing within a tank. The main objective of this paper is experimental study of annular baffle effects as anti-sloshing damping devices to reduce fluid wave sloshing height in steel storage tanks typically used in oil and petrochemical complexes during an earthquake. Shake table tests have been used on a reduced scale model steel storage tank in two cases of with and without annular baffles. Three real earthquake ground motion records are used as input base motion. Based on the experimental test results, dynamic characteristics of studied tank models with different filling levels and different baffle dimensions and arrangements have been obtained and summarized in this paper. Also, sloshing heights and convective mode damping values are determined from the test results and compared with API650 code recommendations and recommended equations by other researchers. Generally, the results of this study indicate significant effects of the annular baffles in reducing the fluid wave sloshing height as sloshing dependent variable dampers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号