首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
The implementation of the European Water Framework Directive requires reliable tools to predict the water quality situations in streams caused by planned land use changes at the scale of large regional river basins. This paper presents the results of modelling the in-stream nitrogen load and concentration within the macro-scale basin of the Saale river (24,167 km2) using a semi-distributed process-based ecohydrological dynamic model SWIM (Soil and Water Integrated Model). The simulated load and concentration at the last gauge of the basin show that SWIM is capable to provide a satisfactory result for a large basin. The uncertainty analysis indicates the importance of realistic input data for agricultural management, and that the calibration of parameters can compensate the uncertainty in the input data to a certain extent. A hypothesis about the distributed nutrient retention parameters for macro-scale basins was tested aimed in improvement of the simulation results at the intermediate gauges and the outlet. To verify the hypothesis, the retention parameters were firstly proved to have a reasonable representation of the denitrification conditions in six meso-scale catchments. The area of the Saale region was classified depending on denitrification conditions in soil and groundwater into three classes (poor, neutral and good), and the distributed parameters were applied. However, the hypothesis about the usefulness of distributed retention parameters for macro-scale basins was not confirmed. Since the agricultural management is different in the sub-regions of the Saale basin, land use change scenarios were evaluated for two meso-scale subbasins of the Saale. The scenario results show that the optimal agricultural land use and management are essential for the reduction in nutrient load and improvement of water quality to meet the objectives of the European Water Framework Directive and in view of the regional development plans for future.  相似文献   

2.
Water quality modelling in the meso-scale Rhin catchment in the German federal state Brandenburg was done (1) to answer some specific questions concerning identification of point and diffuse sources of nutrient pollution in the catchment, (2) to assess the influences of possible climate and land use changes on water quantity and quality and (3) to evaluate potential measures to be done in order to achieve a “good ecological status” of the river and its lakes as required by the Water Framework Directive (WFD).The Rhin catchment is a typical highly regulated lowland river basin in Northern Germany. The regulations complicate water quantity and quality modelling in the catchment. The research was done by using the eco-hydrological model SWIM (Soil and Water Integrated Model), which simulates water and nutrient fluxes in soil and vegetation, as well as transport of water and nutrients to and within the river network. The modelling period was from 1981 until 2005. After calibrating the hydrological processes at different gauges within the basin with satisfactory results, water quality (nitrogen and phosphorus) modelling was done taking into account the emissions of different point sources (sewage treatment plants, etc.) and identifying the amount of diffuse pollution caused mainly by agriculture.For suggesting some feasible measures to improve water quality and to reduce diffuse pollution considering possible climate and land use changes, different reasonable scenarios were applied in consultation with the Environmental Agency of Brandenburg (LUA). The study revealed that the amount of water discharge has significant influence on the concentration of nutrients in the river network, and that nitrogen pollution, caused mainly by diffuse sources, could be notably reduced by application of agricultural measures, whereas the pollution by phosphorus could be diminished most effectively by the reduction of point source emissions.  相似文献   

3.
A three-dimensional hydrodynamic and water quality model was applied to Lake Paldang, a lake in South Korea that is stratified by incoming flows. The spatial and temporal patterns of phytoplankton growth in this lake were determined from the model. The model was calibrated and verified using data measured under different hydrological conditions. The model results were in reasonable agreement with the field measurements, in both the calibration and verification phases. The distributions of water quality and residence time in the lake and phytoplankton response to changes in nutrient loads were examined with the model, and the influence of the hydrodynamics on phytoplankton response was analyzed. The simulation results indicated that Lake Paldang is an essentially phosphorus-limited system, but that phytoplankton growth is limited by low water temperature and short residence time during the winter and the summer monsoon period, respectively. The results of sensitivity analyses also suggested that the hydrodynamics within the lake may have an indirect influence on phytoplankton responses to changes in the limiting nutrient loads, and that reducing phosphorus loading from Kyoungan Stream should be a high priority policy for controlling algal blooms during the pre- and post-monsoon periods. From this study, it was concluded that the three-dimensional water quality model incorporating hydrodynamic processes could successfully simulate phytoplankton response to changes in nutrient loads and that it could become a useful tool for identifying the essential factors determining phytoplankton growth and for developing the best management policy for algal blooms in Lake Paldang.  相似文献   

4.
New legislation for the protection of inland surface waters, transitional waters, coastal waters and ground waters has recently been established in Italy. This law presents a new integrated approach, where all water bodies are considered as complex ecosystems to be studied in each of their components. The new concept of environmental quality of the water body, based on the ecological and chemical status, is also introduced. At the same time (i.e. the end of 2000), the European Community approved the European Water Framework Directive based on the same basic environmental concepts and criteria of the new Italian law. This paper analyses the important points and innovations required by the new Italian legislation for monitoring and classification of marine coastal waters. Details of definitions, parameters, analysis and monitoring programs are discussed. A comparison with the European Water Framework Directive is eventually given, underlining the specific characteristics of the Mediterranean sea, which have to be taken into consideration when applying the European Directive to this particular ecoregion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号