首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Understanding the ecological factors that affect dispersal distances allows us to predict the consequences of dispersal. Although predator avoidance is an important cause of prey dispersal, its effects on dispersal distance have not been investigated. We used simple experimental setups to test dispersal distances of the ambulatory dispersing spider mite (Tetranychus kanzawai) in the presence or absence of a predator (Neoseiulus womersleyi). In the absence of predators, most spider mites settled in adjacent patches, whereas the majority of those dispersing in the presence of predators passed through adjacent patches and settled in distant ones. This is the first study to experimentally demonstrate that predators induce greater dispersal distance in prey.  相似文献   

2.

Bombardier beetles (Coleoptera, Carabidae, Brachininae) possess a remarkable defense mechanism where a hot chemical spray is released from the tip of their abdomen, with an audible explosive sound. To date, the repellent properties of these chemicals have been tested against a limited number of taxa, such as amphibians and insects. To investigate the impact of bombardier beetle defenses on avian predators, feeding trials were conducted using the bombardier beetle (Pheropsophus jessoensis) and the Japanese quail (Coturnix japonica), a sympatric and generalist predator. All naïve, hand-reared quail attacked live beetles, indicating the absence of an innate aversion to them. However, most of the quail rejected consuming the beetles whether or not the beetles sprayed them with chemicals. Naïve quail also rejected dead P. jessoensis individuals. These results support the recent hypothesis that it is not essential for P. jessoensis to spray noxious chemicals to deter predators. We also found that some of the quail exposed to live P. jessoensis remembered to avoid them for up to 5 weeks. Our results provide the first evidence of the repelling effects of bombardier beetle defense mechanisms on avian predators.

  相似文献   

3.
Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.  相似文献   

4.
Biological control of gizzard shad (Dorosoma cepedianum) using predator fish species was managed to reduce impingement on cooling water intake screens at Coffey County Lake (CCL), Kansas. Long term shad and predator proportional stock densities (PSD) and body conditions (Wr) were used to characterize this fishery. Comparisons were completed between the lake’s primary productivity (mg/m3 chlorophyll-a), catch-per-unit-effort (CPUE) of young-of-year (YOY) and adult gizzard shad, and body conditions of predator species. No relationships were found between the lake’s productivity and gizzard shad densities indicating that other mechanisms control shad numbers, likely predation. Body conditions of the prevalent predator species in CCL were positively compared with the previous year’s production during a short-lived increase in shad densities. It is well documented that shad are an important food source for most predator species present in the lake. It is believed that the predator species present played a significant role in reducing YOY shad densities each year. Body conditions of predators did not indicate a surplus of a primary prey species. High shad growth rates and PSD indices promote survival of sufficient shad to adults, thus making this fishery nearly self-sustaining, and beneficial for plant operation.  相似文献   

5.
Slow growth in herbivores may lead to higher mortality, due to prolonged exposure to natural enemies. A number of studies has tested the 'slow-growth, high-mortality' hypothesis using predators or parasitoids as natural enemies of the herbivore, but the possible role of pathogens is poorly documented. We provide evidence that phytopathogenic infection of a plant enhances the susceptibility of herbivore larvae to a generalist entomopathogen. Larvae of the mustard leaf beetle Phaedon cochleariae grow more slowly when feeding on Chinese cabbage leaves infected by the phytopathogenic fungus Alternaria brassicae than larvae feeding on healthy leaves. Treatment of such larvae feeding on diseased plants with an LD50 of the entomopathogenic fungus Metarhizium anisopliae resulted in 100% mortality, compared with a mortality rate of 54% in the control larvae feeding on uninfected leaves. This is the first demonstration of an interaction between a phyto- and an entomopathogenic fungus.  相似文献   

6.
Different types of predators often elicit different antipredator responses in a common type of prey. Alternatively, some prey species may adopt a general response, which provides limited protection from many different types of predator. The Trinidadian guppy, Poecilia reticulata, is faced with a wide range of different predators throughout its range and is known to display varying levels of antipredator behavior depending on the predator assemblage. Pike cichlids, Crenicichla frenata, are regarded as the primary aquatic guppy predator in streams in the northern mountain range in Trinidad. As such, they are seen to be responsible for many of the differences in morphology, life history traits, and behavior between guppy populations from areas with few predators and those from areas with many pike cichlids. In this study we investigated how guppies responded when faced with different predator species using three common aquatic predators. We exposed shoals of ten guppies to one out of four treatments: no predator (control), pike cichlid, acara cichlid (Aequidens pulcher), and wolf fish (Hoplias malabaricus); and we made behavioral observations on both focal individuals and the shoal as a whole. Guppies showed significantly greater levels of predator inspection and shoaling behavior, foraged less, spent more time in the surface water, and stayed in significantly larger shoals when faced with pike cichlids than in other treatments. We discuss these results in the context of multiple predator effects.  相似文献   

7.
Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.  相似文献   

8.
Results from no-choice field and greenhouse studies established an inverse relationship between plant trichome density in cotton and the level of successful attacks on Heliothis zea (Boddie) eggs by the parasite, Trichogramma pretiosum (Riley) and the predator, Chrysopa rufilabris (Burmeister). Thus, plant damage from H. zea can be reduced on glabrous cotton phenotypes due to antixenosis and increased entomophage effectiveness compared to hirsute and pilose phenotypes. Studies by other scientists which demonstrate interactions of natural enemies with host-plant resistance in cotton are also discussed. Symbiotic relationships between the host-plant and its associated predator/parasitoid complex may significantly influence the expression of host-plant resistance in cotton. Scientists involved in programs for development of host-plant resistant cultivars are encouraged to utilize sources of resistance which increase effectiveness of key natural enemies of the major pest species.  相似文献   

9.
Experiments were carried out to determine effects of intercropping on macroarthropod predator activity, both diurnal and seasonal, and on relative consumption of lepidopteran pest larvae during a two-year study. Maize (corn, Zea mays) was intercropped into a grass-legume mixture and compared to monoculture maize. There was significantly more predator activity (number of attacks by predators on pest larvae) and predation (number of larvae consumed) in the intercropped system compared with the monocultured treatment during both years of the study. Predator activity and consumption of larvae were greatest at night in both systems and least during the day. However, the intercropped system had significantly more predator activity during each observation over a 24-h period than did the monocultured system. Predator activity and predation did not fluctuate appreciably over the early part of the growing season until August when there was a significant increase in both parameters. Carabid beetle larvae and spiders were the major predators in June, however, in July and August large carabid adults (> 15 mm) became the dominant predators. Significant correlations were found among carabid beetle activity, density estimates of macroarthropods and the number of lepidopteran larvae consumed in these corn agroecosystems. These correlations between techniques and endemic predatory arthropods indicate that predation is a significant factor in reducing pest populations in intercropped agroecosystems.  相似文献   

10.
The distribution of resources and defence is heterogeneous within plants. Specialist insects may prefer tissue with high concentrations of the plant’s characteristic defence compounds. Most herbivorous butterfly or sawfly larvae are considered to be folivores, so also the turnip sawfly Athalia rosae (Hymenoptera: Tenthredinidae), a specialist herbivore on Brassicaceae. We investigated which tissue larvae choose to feed upon and how they perform on flowers, young or old leaves of Sinapis alba. Furthermore, constitutive and inducible levels of glucosinolates and myrosinases were investigated and nutrients analysed. Larvae moved from leaves to flowers for feeding from the third larval instar on. Flowers were not actively chosen, but larvae moved upwards on the plant, regardless of how plants were orientated (upright or inverted). Flower-feeding larvae were heavier and developed faster than larvae feeding on young leaves, and adults laid more eggs. Old leaves as food source resulted in the lowest growth rates. Flowers contained three and ten times higher myrosinase activities than young and old leaves, respectively, whereas glucosinolate concentrations and nitrogen levels of flowers and young leaves were comparable. Glucosinolate concentrations of old leaves were very low. Changes in tissue chemistry caused by larval feeding were tissue specific. Defence levels did not change in flowers and old leaves after A. rosae feeding in contrast to young leaves. The high insect performance on flowers cannot be explained by differences in chemical defence. Instead, the lack of mechanical defence (trichomes) is probably responsible. Movement to the flowers and folivory is overall highly adaptive for this sawfly species.  相似文献   

11.
In the study of plant defense evolution, invasive plant species can be very insightful because they are often introduced without their enemies, and traits linked to defense can be released from selective pressures and evolve. Further, studying plant defense evolution in invasive species is important for biological control and use of these species. In this study, we investigated the evolution of the defensive chemicals quinolizidine alkaloids (QAs) in the invasive species gorse, Ulex europaeus. Using a common garden experiment, our goals were to characterize the role of QAs relative to specialist enemies of gorse and to investigate if QA concentration evolved in invaded regions, where gorse was introduced without these enemies. Our results showed that pod infestation rate by the seed predator Exapion ulicis and infestation by the rust pathogen Uromyces genistae-tinctoriae were negatively correlated to concentration of the QA lupanine. Quinolizidine alkaloid concentration was very variable between individuals, both within and among populations, but it was not different between native and invaded regions, suggesting that no evolution of decreased resistance occurred after gorse lost its enemies. Our study also suggests that QA concentrations are traits integrated into seed predation avoidance strategies of gorse, with plants that mass-fruit in spring but do not escape pod infestation in time being richer in QAs.  相似文献   

12.
Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants (Zea mays) attacked by either a stem borer (Diatraea saccharalis) or a leaf-chewing caterpillar (Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.  相似文献   

13.
There are numerous studies showing that predation risk may change different aspects of the behavior of prey, such as habitat use, activity pattern, and foraging. Prey should exhibit the strongest antipredatory response against their most deadly predator. Small mustelids are considered the most important mammalian predators of voles. Nevertheless, there is no general agreement as to whether strong antipredatory reactions exist in natural free-living populations of voles. Here, we studied the field vole Microtus agrestis spatial reaction to high predation risk from small mustelids in the breeding (August) and nonbreeding (October) seasons under natural conditions. Voles were exposed to a caged weasel (Mustela nivalis) and a stoat (Mustela erminea), as well as to the odors of these predators. The reactions of 30 field voles were monitored with radiotelemetry. The field voles were found to display antipredator reactions that varied with season. In the breeding period, in response to predation risk, voles reduced locomotory activity and daily-range size, whereas in the nonbreeding period they did not. Changes in home range position were similar for control and treatment voles, in both the breeding and nonbreeding periods. The results indicate that mustelid predators modify the spatial behavior of small rodents in natural conditions depending on season. This might be a reflection of differences in state-dependent responses to predation from sexually active or inactive individuals. This suggests that the basic antipredatory reaction of voles under high predation risk from small mustelids limits their locomotory activity.  相似文献   

14.
Reducing fertiliser applications can reduce production costs for cotton (Gossypium hirsutum L.) growers, as well as nitrogen (N) leaching into the soil and contamination of surface and ground water. But altered N fertilisation may also affect pests and their natural enemies. In this study, plots with four different levels of fertiliser input (0, 45, 90 and 135 kg ha−1 N) were used to investigate the influence of N on cotton pest and beneficial arthropod populations, and on cotton yield in Tifton, GA, USA. We predicted that (1) N fertilisation will correlate positively with cotton plant growth; (2) increased N fertilisation will increase pest populations because plants with more N will be more nutritious for and attractive to herbivores; (3) populations of beneficial arthropods and predation of pests will decline with increased N fertilisation because of reduced plant signaling; (4) increased N fertilisation will increase pest mortality due to parasitoids because of increased host quality. Cotton plant growth was enhanced by N fertilisation but yield was unaffected. N fertilisation significantly affected some pest arthropods but inconsistently. Mirids were most abundant in the high N treatment in 1 year of the study and cotton aphids were most abundant in the highest N treatment in the other year of the study. Arthropod predators were generally more abundant in the high N treatment but only spiders and Geocoris spp. were significantly affected by N treatment, with highest numbers present in the highest N treatment but the significant differences were each only in a single year. The greatest mortality of sentinel pest eggs (Spodoptera exigua) due to predation occurred under low N conditions. N fertilisation had no significant effects on parasitism of feral or sentinel caterpillars.  相似文献   

15.
Palaeobiological evidence indicates that gymnosperms were wind-pollinated and that insect pollination began in angiosperms in the Lower Cretaceous (ca. 135 mya) leading to close associations between higher plants and their pollinators. Cycads, which were widespread and pervasive throughout the Mesozoic (250-65 mya) are among the most primitive living seed-plants found today. Because pollination by beetles and by thrips has now been detected in several modern cycads, it is attractive to speculate that some insects and cycads had already developed similar mutualistic interactions in the Triassic (250-205 mya), long before the advent of angiosperms. We also draw attention to another key factor in this insect-plant relationship, namely secondary, defensive plant substances which must always have controlled interspecific interactions. Cycads mainly produce toxic azoglucosides and neurotoxic non-protein amino acids (e.g. BMAA), which apparently are crucial elements in the development and maintenance of mutualism (pollination) and parasitism (herbivory) by cycad-linked herbivores. We now add new results on the uptake and storage of the main toxin, cycasin, of the Mexican cycad Zamia furfuracea by its pollinator, the weevil Rhopalotria mollis, and by a specialist herbivore of Zamia integrifolia, the aposematic Atala butterfly Eumaeus atala.  相似文献   

16.
Imazethapyr (IM) is a widely used acetolactate synthase-inhibiting chiral herbicide. It has long-term residuals that may be absorbed by the human body through the edible parts of plants, such as vegetable leaves or fruits. Here, we selected a model plant, Arabidopsis thaliana, to determine the effects of R-IM and S-IM on its leaf structure, photosynthetic efficiency, and metabolites, as well as the structures of microorganisms in the phyllosphere, after 7 days of exposure. Our results indicated enantiomeric differences in plant growth between R-IM and S-IM; 133 µg/kg R-IM showed heavier inhibition of photosynthetic efficiency and greater changes to subcellular structure than S-IM. R-IM and S-IM also had different effects on metabolism and leaf microorganisms. S-IM mainly increased lipid compounds and decreased amino acids, while R-IM increased sugar accumulation. The relative abundance of Moraxellaceae human pathogenic bacteria was increased by R-IM treatment, indicating that R-IM treatment may increase leaf surface pathogenic bacteria. Our research provides a new perspective for evaluating the harmfulness of pesticide residues in soil, phyllosphere microbiome changes via the regulation of plant metabolism, and induced pathogenic bacterial accumulation risks.  相似文献   

17.
Chemo-ecological studies on hexactinellid sponges from the Southern Ocean   总被引:1,自引:1,他引:0  
Hexactinellids (glass sponges) are an understudied class with syncytial organization and poor procariotic associations, thought to lack defensive secondary metabolites. Poriferans, though, are outstanding sources of bioactive compounds; nonetheless, a growing suspicion suggests that many of these chemicals could be symbiont-derived. In Polar latitudes, sponges are readily invaded by diatoms, which could provide natural products. Hexactinellids are typical of deep waters; but in Antarctica, they dominate the upper shelf providing shelter and food supply to many opportunistic mesograzers and macroinvertebrates, which exert strong ecological pressures on them. Aiming to examine the incidence of defensive activities of hexactinellids against consumption, feeding experiments were conducted using their lipophilic fractions. Antarctic hexactinellid and demosponge extracts were tested against the asteroid Odontaster validus and the amphipod Cheirimedon femoratus as putative sympatric, omnivorous consumers. Hexactinellids yielded greater unpalatable activities towards the amphipod, while no apparent allocation of lipophilic defenses was noted. After chemical analyses on the lipophilic fractions from these Antarctic glass sponges, quite similar profiles were revealed, and no peculiar secondary metabolites, comparable to those characterizing other poriferans, were found. Instead, the lipidic compounds 5α(H)-cholestan-3-one and two glycoceramides were isolated for their particular outspread presence in our samples. The isolated compounds were further assessed in asteroid feeding assays, and their occurrence was evaluated for chemotaxonomical purposes in all the Antarctic samples as well as in glass sponges from other latitudes by NMR and MS. Characteristic sphingolipids are proposed as chemical markers in Hexactinellida, with possible contributions to the classification of this unsettled class.  相似文献   

18.
郭冰林  丰晨晨  陈悦  林迪  李岚涛 《环境科学》2023,44(9):5080-5091
揭示小白菜(Brassica chinensis L.)微塑料胁迫响应特征,为微塑料污染生理生态机制阐释以及微塑料污染土壤生物修复提供理论基础与实验参考.通过室内水培实验,研究不同粒径(100 nm和1000 nm)聚苯乙烯微塑料(PS-MPs)胁迫对小白菜生长发育、光合生理、抗氧化酶活性、营养品质、解剖结构和冠层群体温度的影响效应.结果表明,PS-MPs (100 nm和1000 nm)胁迫均显著抑制小白菜生长发育和光合生理过程,其叶片数、株高、叶面积和生物量等表型指标以及叶绿素a (Chl-a)、叶绿素b (Chl-b)、叶绿素a+b (Chl-a+b)、类胡萝卜素(Car)和光合特性等均随PS-MPs胁迫增加而显著降低.同时,PS-MPs胁迫显著增强了小白菜氧化应激反应能力.随PS-MPs胁迫增强,叶片过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性以及丙二醛(MDA)含量均呈先升高后降低的变化趋势.PS-MPs胁迫降低了小白菜叶片厚度、海绵组织厚度和栅栏组织厚度.此外,PS-MPs胁迫显著提升了小白菜叶片植株冠层群体温度.综上,PS-MPs胁迫对小白菜生长发育及理化特性均具有明显的抑制作用和毒性损伤.  相似文献   

19.
The open nesting behaviour of giant honeybees (Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees’ nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey–predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they “follow” the wasps more persistently (up to 100 ms) than the wasps “follow” the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps’ flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.  相似文献   

20.
The deletrious effects of chemical pesticides on many plant and animal populations have been described. Rapidly increasing costs of convenient energy sources have increased cost-benefit ratios of chemical pesticides used. We compared biological control techniques versus chemical pesticides for inputs of human labor, machinery, and fuel per hectare at each pertinent step of the production procedure. Three pest-crop systems were selected and all applicable factors converted into kilocalories of energy required. These were: (1) citrus-red scale (Aonidiella aurantii), using oil as a chemical and the predator wasp, Aphytis melinus as a biological control; (2) greenhouse cucumbers-white fly (Trialeurodes vaporariorum), using Orthene or the wasp, Encarsia formosa; (3) tomato-hornworm (Manduca quinquemaculata) using Sevin or the bacterium, Bacillus thurengiensis.For citrus-red scale, the pesticide required 5 248 405 kcal, the use of A. melinus 100 793 kcal; for cucumber-white fly the pesticide required 29 300 kcal, E. formosa 154 500 kcal; for tomato-hornworm the pesticide 26 693, B. thurengiensis 207 240 kcal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号