首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomedical solid waste management in an Indian hospital: a case study   总被引:1,自引:0,他引:1  
The objectives of this study were: (i) to assess the waste handling and treatment system of hospital bio-medical solid waste and its mandatory compliance with Regulatory Notifications for Bio-medical Waste (Management and Handling) Rules, 1998, under the Environment (Protection Act 1986), Ministry of Environment and Forestry, Govt. of India, at the chosen KLE Society's J. N. Hospital and Medical Research Center, Belgaum, India and (ii) to quantitatively estimate the amount of non-infectious and infectious waste generated in different wards/sections. During the study, it was observed that: (i) the personnel working under the occupier (who has control over the institution to take all steps to ensure biomedical waste is handled without any adverse effects to human health and the environment) were trained to take adequate precautionary measures in handling these bio-hazardous waste materials, (ii) the process of segregation, collection, transport, storage and final disposal of infectious waste was done in compliance with the Standard Procedures, (iii) the final disposal was by incineration in accordance to EPA Rules 1998, (iv) the non-infectious waste was collected separately in different containers and treated as general waste, and (v) on an average about 520 kg of non-infectious and 101 kg of infectious waste is generated per day (about 2.31 kg per day per bed, gross weight comprising both infectious and non-infectious waste). This hospital also extends its facility to the neighboring clinics and hospitals by treating their produced waste for incineration.  相似文献   

2.
This study investigated the health-care waste (HCW) management at each health-care facility level at two selected sites in the Lao People's Democratic Republic (Lao PDR): Vientiane Municipality; and Bolikhamxay province. It focused on the amount of HCW, its segregation and the factors influencing HCW management, particularly segregation procedures. A high proportion of incorrectly segregated medical waste was found at each level of health-care facility. Re-segregation revealed 39, 62, 57 and 37% at national hospital, provincial hospital, district hospital and health centre level, respectively, was poorly segregated. The mean of generated HCW was 0.62 kg/bed per day (Vientiane Municipality) and 0.38 kg/bed per day (Bolikhamxay) at two study sites. A higher proportion of medical waste (MW) from the inpatient department at the primary health-care level was found. Thus, HCW management at primary health-care facilities needs more attention and should be better understood.  相似文献   

3.
BackgroundHealthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75–90% of these wastes are classified as household waste posing no potential risk, 10–25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran.Materials and methodsNamazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period.ResultsBefore the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste.ConclusionA structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings.  相似文献   

4.
This study was initiated to characterize solid and liquid wastes generated in healthcare institutions and to provide a framework for the safe management of these wastes. The project was carried at three major medical institutions, namely, the Jeetoo Hospital, the Sir Seewoosagur Ramgoolam National (SSRN) Hospital and the Clinic Mauricienne. A waste audit carried out at these sites revealed that approximately 10% of solid wastes was hazardous in nature, consisting mainly of infectious, pathological and chemical wastes. The average amount of hazardous wastes per patient per day was found to be 0.072 kg at Jeetoo hospital, 0.091 kg at SSRN hospital and 0.179 kg at the clinic. The amount of hazardous wastes generated as a function of the number of occupied beds was found to follow a relationship of type y=0.0006x-0.19, where y was the amount of hazardous wastes generated per bed per day and x was the number of occupied beds. The waste quantifying process also revealed that at SSRN Hospital, 0.654 m(3) of water was being consumed per patient per day and the amount of wastewater produced was 500 m(3)/day. Further analysis revealed that the wastewater was polluting with chemical oxygen demand (COD), biological oxygen demand (BOD(5)), total suspended solids (TSS) and coliform content well above permissible limits.  相似文献   

5.
Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3kg/household/day and 0.25kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r(xy)=0.236, p<0.05), education level (r(xy)=0.244, p<0.05) and monthly income (r(xy)=0.671, p<0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.  相似文献   

6.
Inconsistencies are present in the management options for healthcare wastes in Mongolia. One of the first critical steps in the process of developing a reliable waste management plan requires the performance of a waste characterization analysis. The objectives of this study were an assessment of the current situation of healthcare waste management (HCWM) and characterization of healthcare wastes generated in Ulaanbaatar. A total about 2.65 tonnes of healthcare wastes are produced each day in Ulaanbaatar (0.78 tons of medical wastes and 1.87 tons of general wastes). The medical waste generation rate per kg/patient-day in the inpatient services of public healthcare facilities was 1.4-3.0 times higher than in the outpatient services (P<0.01). The waste generation rate in the healthcare facilities of Ulaanbaatar was lower than in some other countries; however, the percentage of medical wastes in the total waste stream was comparatively high, ranging from 12.5% to 69.3%, which indicated poor waste handling practices. Despite the efforts for the management of wastes, the current system of healthcare waste management in Ulaanbaatar city of Mongolia is under development and is in dire need of immediate attention and improvement. It is essential to develop a national policy and implement a comprehensive action plan for HCWM providing environmentally sound technological measures to improve HCWM in Mongolia.  相似文献   

7.
In the present study, the quantities of infectious medical wastes, generated from 12 public hospitals supervised by the 2nd Health Region Administration of Central Macedonia, Northern Greece, were calculated at a very disaggregated level for the first time and were compared to other reported characterization studies. Data was recorded by using an appropriately designed questionnaire, which was completed for each day of one week, in every department, clinic, unit or laboratory of each one of the 12 aforementioned hospitals. Afterwards, average generation indexes were determined in relation to certain important organizational and functional factors, such as the number of beds, bed coverage, the different hospital sections and wards, and the type of hospital. The way that sources of infectious wastes, generated from hospitals, vary by ward and department, was also illustrated and the most important sources were identified. Generated infectious hospital wastes vary from 0.26 to 0.89 kg/bed/day or 0.51 to 1.22 kg/patient/day, excluding the three specialised hospitals of the Health Region. The total amount of medical waste generated from the 2nd Health Region (only public hospitals) was estimated to be 691 tonnes/yr or 0.73 kg/cap/yr.  相似文献   

8.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

9.
The objective of this study was to analyze the present status of medical waste management in the light of the Medical Waste Control Regulation (MWCR) in Istanbul, the largest city in Turkey. About 17% of the hospitals, 20% of bed capacity, and 54% of private hospitals in Turkey are located in Istanbul. The first regulation about medical waste management in Turkey was published in 1993, and as a candidate state, it was changed in 2005 in accordance with EU Environmental Directives. In this work, a survey of 14 questions about the amount, collection, and temporary storage of medical wastes was applied to 192 hospitals in Istanbul through face-to-face interviews. It was found that the estimated quantity of medical waste from the hospitals is about 22tons/day and the average generation rate is 0.63kg/bed-day. Recyclable materials are collected separately at a rate of 83%. Separate collection of different types of wastes is consistently practiced, but 25% of the hospitals still use inappropriate containers for medical waste collection. Almost 77% of the hospitals use appropriate equipment for the medical waste collection personnel. The percentage of the hospitals that have temporary storage depots is 63%. Medical waste management in Istanbul is carried out by applying the MWCR.  相似文献   

10.
Journal of Material Cycles and Waste Management - The amount of ceramic waste being generated is increasing day by day, and ceramic waste management is one of the most challenging issues for many...  相似文献   

11.
When developing proper waste management strategies, it is essential to characterize the volume and composition of solid waste. The aim of this work was to evaluate the composition of dental waste produced by three dental health services in Belo Horizonte, Minas Gerais State, Brazil. Two universities, one public and one private, and one public dental health service were selected. Waste collection took place from March to November 2007. During this period, three samples were collected from each dental health service. The total amount of dental waste produced in one day of dental work was manually separated into three categories: infectious and potentially infectious waste, accounting for 24.3% of the total waste; non-infectious waste, accounting for 48.1%; and domestic-type waste, accounting for 27.6% (percentages are for mean weights of solid waste). Our results showed that most of the waste considered as biomedical may be misclassified, consequently making the infectious waste amount appear much larger. In addition, our results suggest that the best waste minimization method is recycling, and they help to define an appropriate waste management system in all three of the dental health services involved in this study.  相似文献   

12.
In India, a few studies have been conducted for analyzing the generation rates and composition of medical waste (MW). Inadequate information about the amount and composition of MW results in ineffective management practices. The present study seeks to evaluate healthcare waste (HCW) generation rates by healthcare facilities (HCFs) available in Uttarakhand, a northern state of India. Study also focuses on modeling the quantity of different types of MW generated at various HCFs and determining significant factors contributing towards MW generation. Seasonal variation in amount of MW generated from various HCFs has also been considered. To achieve these objectives, cross-sectional as well as longitudinal data have been collected from various HCFs in Uttarakhand, India. The survey revealed that around 36% of the total HCFs did not segregate their MW as per policy guidelines. Cross-sectional data for May 2015 were collected from 75 HCFs to analyze and model the composition and quantity of HCW generated. Multiple Linear Regression and Artificial Neural Network techniques were applied to model cross-sectional data. In the composition of the overall MW, ‘yellow waste’ carries the maximum share, followed by ‘red waste’ and then the ‘blue waste’. In addition, the ‘type of HCF’ and ‘bed occupancy’ have been modeled as the important factors, contributing towards the MW generations rates. Longitudinal data for 2 years (2013 and 2014) were collected to examine seasonal variation in HCW generation rates using polynomial regression analysis. Result shows that MW quantity also varies with the change in the season. Findings of the study will help hospitals and waste treatment facilities to predict amount of waste that may be generated, and plan resources towards efficient handling and disposal of MW.  相似文献   

13.
In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed.Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that in secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members’ knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.  相似文献   

14.
This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan’s compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives.  相似文献   

15.
Medical waste production at hospitals and associated factors   总被引:2,自引:0,他引:2  
This study was conducted to evaluate the quantities of medical waste generated and the factors associated with the generation rate at medical establishments in Taiwan. Data on medical waste generation at 150 health care establishments were collected for analysis in 2003. General medical waste and infectious waste production at these establishments were examined statistically with the potential associated factors. These factors included the types of hospital and clinic, reimbursement payment by National Health Insurance, total number of beds, bed occupancy, number of infectious disease beds and outpatients per day. The average waste generation rates ranged from 2.41 to 3.26kg/bed/day for general medical wastes, and 0.19-0.88kg/bed/day for infectious wastes. The total average quantity of infectious wastes generated was the highest from medical centers, or 3.8 times higher than that from regional hospitals (267.8 vs. 70.3Tons/yr). The multivariate regression analysis was able to explain 92% of infectious wastes and 64% of general medical wastes, with the amount of insurance reimbursement and number of beds as significant prediction factors. This study suggests that large hospitals are the major source of medical waste in Taiwan. The fractions of medical waste treated as infectious at all levels of healthcare establishments are much greater than that recommended by the USCDC guidelines.  相似文献   

16.
Health care waste is considered a major public health hazard. The objective of this study was to assess health care waste management (HCWM) practices currently employed at health care centers (HCCs) in the West Bank – Palestinian Territory. Survey data on solid health care waste (SHCW) were analyzed for generated quantities, collection, separation, treatment, transportation, and final disposal. Estimated 4720.7 m3 (288.1 tons) of SHCW are generated monthly by the HCCs in the West Bank. This study concluded that: (i) current HCWM practices do not meet HCWM standards recommended by the World Health Organization (WHO) or adapted by developed countries, and (ii) immediate attention should be directed towards improvement of HCWM facilities and development of effective legislation. To improve the HCWM in the West Bank, a national policy should be implemented, comprising a comprehensive plan of action and providing environmentally sound and reliable technological measures.  相似文献   

17.
Increasing population levels, rapid economic growth and rise in community living standard accelerates the generation rate of municipal solid waste (MSW) in Indian cities. Improper management of MSW causes hazards to inhabitants. The objectives of the study are to determine the quantitative and qualitative characteristics of MSW along with basic information and to create GIS maps for Allahabad city. The samples have been randomly collected from various locations and analyzed to determine the characteristics of MSW. A questionnaire survey has been carried out to collect data from inhabitants including MSW quantity, collection frequency, satisfaction level, etc. The Geographic Information System (GIS) has been used to analyze existing maps and data, to digitize the existing sanitary ward boundaries and to enter the data about the wards and disposal sites. The total quantity of MSW has been reported as 500 ton/day, and the average generation rate of MSW has been estimated at 0.39 kg/capita/day. The generated ArcGis maps give efficient information concerning static and dynamic parameters of the municipal solid waste management (MSWM) problem such as the generation rate of MSW in different wards, collection point locations, MSW transport means and their routes, and the number of disposal sites and their attributes.  相似文献   

18.
The composition and production rate of solid waste produced by four dental laboratories were measured in the Prefecture of Xanthi (Greece) during 2002. The selected dental labs in Xanthi were expected to produce approximately 75% of the waste produced from of all seven dental laboratories in the Xanthi Prefecture. Sampling was performed during a 2-month period. Solid waste was categorized into three major categories: (a) infectious and potentially infectious waste, (b) non-infectious toxic waste and (c) household type solid waste. Dental laboratories solid waste (DLSW) was produced at a rate of 0.059 g/cap/day (or 22 g/cap/year) at the time of the study. Household type waste, infectious and potentially infectious waste and non-infectious toxic waste comprised approximately 74%, 26% and less than 0.5% of the total DLSW weight produced, respectively. DLSW was estimated to be approximately 0.007% of the amount of municipal solid waste produced in the Prefecture of Xanthi.  相似文献   

19.
This study includes a survey of the procedures available, techniques, and methods of handling and disposing of medical waste at medium (between 100 and 200 beds) to large (over 200 beds) size healthcare facilities located in Irbid city (a major city in the northern part of Jordan). A total of 14 healthcare facilities, including four hospitals and 10 clinical laboratories, serving a total population of about 1.5 million, were surveyed during the course of this research. This study took into consideration both the quantity and quality of the generated wastes to determine generation rates and physical properties. Results of the survey showed that healthcare facilities in Irbid city have less appropriate practices when it comes to the handling, storage, and disposal of wastes generated in comparison to the developed world. There are no defined methods for handling and disposal of these wastes, starting from the personnel responsible for collection through those who transport the wastes to the disposal site. Moreover, there are no specific regulations or guidelines for segregation or classification of these wastes. This means that wastes are mixed, for example, wastes coming from the kitchen with those generated by different departments. Also, more importantly, none of the sites surveyed could provide estimated quantities of waste generated by each department, based upon the known variables within the departments. Average generation rates of total medical wastes in the hospitals were estimated to be 6.10 kg/patient/day (3.49 kg/bed/day), 5.62 kg/patient/day (3.14 kg/bed/day), and 4.02 kg/patient/day (1.88 kg/bed/day) for public, maternity, and private hospitals, respectively. For medical laboratories, rates were found to be in the range of 0.053-0.065 kg/test-day for governmental laboratories, and 0.034-0.102 kg/test-day for private laboratories. Although, based on the type of waste, domestic or general waste makes up a large proportion of the waste volume, so that if such waste is not mixed with patient derived waste, it can be easily handled. However, based on infections, it is important for healthcare staff to take precautions in handling sharps and pathological wastes, which comprises only about 26% of the total infectious wastes. Statistical analysis was conducted to develop mathematical models to aid in the prediction of waste quantities generated by the hospitals studied, or similar sites in the city that are not included in this study. In these models, the number of patients, number of beds, and hospital type were determined to be significant factors on waste generation. Such models provide decision makers with tools to better manage their medical waste, given the dynamic conditions of their healthcare facilities.  相似文献   

20.
Solid waste management in Macao: practices and challenges   总被引:2,自引:0,他引:2  
The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号