首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
钯负载泡沫镍电极电化学还原水中三氯乙酸   总被引:1,自引:0,他引:1       下载免费PDF全文
采用非电沉积法制备了钯负载泡沫镍电极,运用SEM技术对其进行了表征,并以其阴极、铂丝为阳极进行了电化学还原三氯乙酸的研究,考察了工艺条件对三氯乙酸降解效果的影响,并对反应动力学和反应机理和进行了探讨。结果表明:钯负载泡沫镍电极具有较高的比表面积和良好的储氢性能;以20 mmol/L硫酸钠为电解质,在电解温度为20℃、钯负载量为4.5 mg/cm~2的条件下恒流(10 mA)电解240 min,三氯乙酸降解率达99.76%,氯原子脱除率达73.86%;三氯乙酸的电化学还原反应过程以及三氯乙酸上未脱除氯原子浓度的变化均符合拟一级反应动力学方程;三氯乙酸在电化学还原过程中逐个脱除氯原子。  相似文献   

2.
从废感光胶片中回收银   总被引:2,自引:0,他引:2  
研究了以Fe3 -乙二胺四乙酸二钠-N a2S2O3体系为浸取剂从废感光胶片中回收银的方法,考察了浸出银的最佳工艺条件。实验表明,当浸取剂中FeC l3.6H2O质量浓度为35g/L、N a2S2O3.5H2O质量浓度为150g/L、pH为7、固液质量比为3∶10时,浸取剂可重复使用6次,胶片上银的浸出率可达99%以上;浸取液中的银采用硼氢化钠还原回收,粗银粉配以熔剂高温熔炼可得到纯度达99.78%的银,银回收率达96.88%,回收银后的浸取液可循环使用。  相似文献   

3.
本文研究利用碳质固体作还原剂,在高温下,无附加催化剂、不消耗气体还原剂、非选择性还原 NOx 的新技术.NOx 的净化率可达99%以上;并对该还原反应的物理化学基础进行概括分析,从热力学观点论证了碳质固体还原 NOx 的可能性;从宏观反应动力学方面研究了尾气中氧的存在对该还原反应的影响,以及其反应的速度方程;从技术经济角度探讨了其在工业上应用的可能性。并用工艺原理模型作了验证试验。  相似文献   

4.
从银铅锌废渣中回收硝酸银的研究   总被引:1,自引:0,他引:1  
胡乔生 《化工环保》2001,21(4):196-199
介绍了用灼烧、浸取、沉淀、溶转和离子交换等方法,从银铅锌废渣中直接回收硝酸银,收率可达80.12%,AgNO3纯度为99.9%。考察了试料粒度、FeCl3质量浓度、溶液酸度、固液比,反应温度及浸取时间对银浸出率的影响。  相似文献   

5.
软锰矿浆催化氧化烟气中二氧化硫产酸过程研究   总被引:1,自引:1,他引:0  
采用软锰矿浆催化氧化烟气中的SO2,使其生成硫酸。考察了软锰矿浆液固比、软锰矿浆初始pH、气体流量、进口SO2浓度、气体中氧浓度和反应温度对硫酸浓度的影响。试验结果表明,软锰矿浆的液固比和气体中的氧浓度对产酸速率的影响最大。软锰矿浆与SO2反应生成硫酸的过程分为线性阶段和幂函数两个阶段,符合Pasiuk提出的反应动力学模型。  相似文献   

6.
蚀刻液水合肼还原除铜   总被引:2,自引:0,他引:2  
将电路板厂废弃的蚀刻液,经氢氧化铜沉淀法回收大部分铜后,再采用水合肼还原,进一步除铜。反应温度为50℃,水合肼质量分数为3.0%,溶液pH为6.0,废液中铜的去除率可达98.5%,处理后废液中铜的质量浓度低于0.2g/L,可作为碱性蚀刻液重复利用。  相似文献   

7.
《化工环保》2008,28(5)
该发明公开了一种用隧道窑还原含碳钒钛铁精矿球团生产铁粉及联产钛渣和五氧化二钒的方法。钒钛铁精矿经破碎、润磨,制成球团,将其置于隧道窑中还原,再进行破碎,经湿磨后,进行磁选和重选,得到铁粉和尾矿,尾矿用钛白废酸浸出,除去残余的镁和铁,经过滤,烘干,得到的物料加入钠盐进行钠化焙烧,再采用水浸出后分别得到钛渣和钒酸钠溶液,最后对钒酸钠溶液采用铵盐沉钒和煅烧脱氨得到五氧化二钒产品。  相似文献   

8.
镉试剂2B固相萃取光度法测定水中微量银   总被引:1,自引:0,他引:1  
研究了镉试剂2B固相萃取测定银的方法。在pH为9.5的硼砂-氢氧化钠缓冲介质中,乳化剂-OP存在下,镉试剂2B与银反应生成2∶1稳定络合物,该络合物可用pH使用范围为1~12的W atersX terraTMRP18固相萃取小柱富集,小柱上富集的络合物用乙醇(内含0.01 mol/L、pH为9.5的四氢吡咯-醋酸缓冲溶液)洗脱后用光度法测定,在洗脱剂介质中最大吸收波长为555 nm,摩尔吸光系数为1.04×105L/(mol.cm)。银质量浓度在0.01~1.0μg/mL内符合比尔定律,方法用于环境水样中银含量的测定,结果令人满意。  相似文献   

9.
王学海  李勇  刘忠生 《化工环保》2011,31(6):549-552
以堇青石蜂窝陶瓷为载体,采用TiO2浆液涂覆载体,再负载活性组分V和W,制备了NH3选择性还原NOx催化剂,研究了TiO2涂层的制备工艺条件,并对催化剂的活性及稳定性进行了评价.实验结果表明,制备TiO2涂层的最佳工艺条件为:TiO2浆液中铝溶胶质量分数12%,浆液pH 1.91,浆液固含量(TiO2与铝溶胶中Al2O...  相似文献   

10.
研究了在散射光下铁(III)-丙酮酸盐配合物对铬(V I)的光还原反应;考察了溶液pH、铁(III)、丙酮酸钠、铬(V I)浓度对反应的影响;分析了铬(V I)光还原反应的动力学。实验结果表明:铁(III)-丙酮酸盐配合物体系能在较弱的散射光下还原铬(V I)。在铬(V I)浓度为19.2μm o l/L、铁(III)浓度为10.0μm o l/L、丙酮酸钠浓度为240μm o l/L、pH为3.0、光照240m in的条件下,铬(V I)的还原率达到99.7%。从表观动力学方程的反应级数看,铁(III)的级数(0.83)最高,铁(III)浓度是影响铬(V I)光还原反应速率的主要因素,铁(II)是铬(V I)光还原的主要还原剂。  相似文献   

11.
以炭纤维为载体,采用电沉积法制备零价铁/炭纤维,考察了零价铁/炭纤维对制药废水COD的去除效果。SEM表征结果显示,炭纤维表面光滑,炭纤维上负载的零价铁呈现大小不一的球状。实验结果表明:在初始废水p H为5、铁碳质量比为2∶1、固液比(固体质量以铁计)为90 g/L、曝气量为80 L/h的条件下,采用零价铁/炭纤维体系处理COD=10 082.63 mg/L、色度为135倍、p H=7.3、SS=250 mg/L、Na Cl质量分数为3.5%的制药废水,COD去除率可达72.79%,出水COD为2 743.48 mg/L,减轻了后续生化处理工艺的进水负荷;零价铁/炭纤维降解制药废水中COD的过程符合三级反应动力学方程。  相似文献   

12.
铁屑法处理活性艳红废水动力学模型   总被引:21,自引:1,他引:21  
杨玉杰  孙剑辉 《化工环保》1996,16(3):137-141
研究了铁屑法处理性艳红染料(K-2BP)废水的脱色过程和铁屑溶解过程动力学模型。脱色反应为一级反应,铁屑溶解符合零级反应。了固-液比,温度、PH、铁屑粒径、活化时间等诸因素对反庆速度常数的影响。  相似文献   

13.
利用草酸钴废料协同浸出水钴矿中的钴和铜,考察了工艺条件对浸出率的影响,并推荐了一种二段浸出及后续生产草酸钴的工艺流程。实验结果表明,在草酸钴废料与水钴矿的质量比为20%、反应时间为120 min、反应温度为85 ℃、初始H2SO4浓度为1.00 mol/L、液固比为4 mL/g的最佳工艺条件下,钴和铜的浸出率分别达到98.82%和96.24%。该工艺应用于水钴矿的还原浸出,在回收利用草酸钴废料的同时,降低了还原剂的消耗,且对浸出液后续处理工艺无影响。  相似文献   

14.
胡菲菲  邵庆国 《化工环保》2013,33(2):119-122
对微波辅助Fe-H2O2联合处理罗丹明B废水进行了研究,分别考察了废水pH、H2O2加入量、铁粉加入量、初始罗丹明B质量浓度以及反应时间等因素对罗丹明B去除率的影响。实验结果表明,对于100mg/L的罗丹明B废水,当加入50mg/L铁粉、10.0mL/LH2O2,反应12min后,罗丹明B去除率达到98.7%,并且拓宽了反应的pH范围。  相似文献   

15.
以化工园区污水处理厂生化出水为背景水样,考察了臭氧氧化对2,4,6-三氯酚、氯苯、1,2-二氯苯、对硝基氯苯、四氯酞酸5种特征氯代烃污染物的降解效果,并对其降解动力学进行了分析。实验结果表明:臭氧对2,4,6-三氯酚和氯苯的降解效果最好,反应30 min时的去除率均接近100%,其次为1,2-二氯苯和对硝基氯苯,反应30 min时的去除率分别为95.7%和36.0%,最差为四氯酞酸,反应30 min时的去除率仅为8.9%;臭氧对2,4,6-三氯酚和对硝基氯苯的降解符合零级动力学方程,对氯苯和1,2-二氯苯的降解符合一级动力学方程,对四氯酞酸的降解符合二级动力学方程。  相似文献   

16.
自制了CuO-TiO_2/Al_2O_3粒子电极,对其进行了表征。在此基础上构建了紫外光协同三维粒子电极电催化体系降解水中的罗丹明B,考察了降解过程的影响因素、动力学及机理。表征结果显示,粒子电极具有良好的表面结构及有效催化成分。实验结果表明:在罗丹明B质量浓度20 mg/L、槽电压15 V、电流0.3 A、溶液pH 3.0、曝气量1.5 L/min、Fe~(2+)投加量0.5 mmol/L的条件下反应60 min,脱色率达96.29%;反应过程符合一级动力学方程,反应速率常数为0.060 mg/(L·min);紫外光的加入使溶液中H_2O_2的浓度降低约30%,促进了H_2O_2的分解。  相似文献   

17.
分析了氯离子的干扰机理,提出了用硝酸银代替硫酸汞消除氯离子干扰测定高氯离子水样COD的分析方法,同时对COD废液的处理及废液中银的回收利用进行了研究。实验结果表明,该法具有较好的准确性和重复性,其相对误差均在国家规定的允许范围内;COD废液中的银经分离后,用Zn—H2SO4体系还原回收,银回收率为94.8%,回收的银粉纯度为99.6%,且可实现COD废液中银的循环使用。  相似文献   

18.
采用氨-肼联合还原法回收废硅电池片上的银,优化了回收的工艺条件。实验得到的最佳回收工艺条件为:室温下采用硝酸2次浸取废硅电池片上的银,其中硝酸质量分数30%,硝酸浸取时间6 min;氯化银粉体用氨水和水合肼还原,n(Ag)∶n(N2H4)=0.5,水合肼还原反应温度50 ℃。回收的银粉纯度很高,结晶性较好,无需提纯。  相似文献   

19.
董梅  周惠良  郭玉琼 《化工环保》2016,36(3):288-292
采用H_2O_2溶液对兰炭末进行改性,并将改性后的兰炭末用于硝基苯生产废水(COD为560 mg/L)的吸附处理。对改性前后的兰炭末进行了表征,考察了吸附效果的影响因素,并对吸附前后改性兰炭末的燃烧热进行了测定。表征结果显示,兰炭末经改性后比表面积和孔径均增大。实验结果表明:在改性兰炭末投加量为0.2 g/m L、吸附时间为180 min、吸附温度为30℃的条件下,废水的COD去除率为93.4%,处理出水达到GB 8978—1996《污水综合排放标准》中规定的排放标准;改性兰炭末对废水中COD的吸附过程符合准二级动力学方程和Freundlich等温吸附模型;吸附后的改性兰炭末燃烧热值增大。  相似文献   

20.
Thermogravimetric (TG) analysis and infrared spectroscopy were used to analyze the pyrolysis characteristics of printed circuit board scraps (PCBs), coal powder and their mixtures under nitrogen atmosphere. The experimental results show that there is a large difference between waste PCBs and coal powder in pyrolysis processing. The pyrolysis properties of the mixing samples are the result of interaction of the PCBs and coal powder, which is influenced by the content of mixture. The degree of pyrolysis and pyrolysis properties of the mixture are much better than that of the single component. The TG and the differential thermogravimetric (DTG) curves of the PCBs mixed with coal powder move towards the high-temperature zone with increasing amount of coal powder and subsequently the DTG peak also becomes wider. The Coats–Redfern integral method was used to determine the kinetic parameters of pyrolysis reaction mechanism with the different proportion of mixture. The gas of pyrolysis mainly composes of CO2, CO, H2O and some hydrocarbon. The bromide characteristic absorption peak has been detected obviously in the pyrolysis gas of PCBs. On the contrary, the absorption peak of the bromide is not obvious in pyrolysis gas of the PCBs samples adding 40% coal powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号