共查询到20条相似文献,搜索用时 0 毫秒
1.
天然丁二酮是一种香精载体,为提高其产量,有必要筛选出丁二酮高产菌株及其最佳发酵条件.从保存的一株丁二酮高产菌株6-1(2)出发,通过分子生物学方法对其进行鉴定,采用单因素试验和最佳单因素组合实验的方法筛选出该菌株的最佳发酵条件.结果表明,实验菌株6-1(2)与植物乳杆菌Lactobacillus plantarum的AB326301.1序列同源性最高,初步鉴定为植物乳杆菌;发酵条件经过优化后,丁二酮的产量从初始的38 mg/L提高到167.56 mg/L,提高了340.95%,产量提高显著.优化发酵条件为:牛肉膏10 g/L,柠檬酸氢二胺2 g/L,酵母浸粉15 g/L,磷酸氢二钾2 g/L,乙酸钠2 g/L,葡萄糖20 g/L,蛋白胨30 g/L,吐温-80 1 mL/L,初始pH 6.2-6.4,接种量1.5%,37℃静置培养10 h;该发酵条件下的丁二酮产量提高显著.本研究对丁二酮的工业化生产具有一定的参考价值. 相似文献
2.
为明确放线菌T111在植物病害生物防治中的应用潜力,通过形态观察、生理生化测定结合16S rDNA序列分析确定了其分类地位,采用平板打孔法测定了发酵液的理化性质,并采用单因素试验与正交设计方法筛选出该菌株的优化发酵配方和发酵条件.结果表明,T111与黄色链霉菌Streptomyces flaveus strain NBRC3359(AB184749)序列的同源性最高,初步鉴定为黄色链霉菌(Streptomyces flaveus).该发酵液对黄瓜菌核、黄瓜蔓枯、棉花红腐病菌等有较高的抑制活性;贮存稳定性和热稳定性良好,4℃贮存60 d,抑菌活性为对照的88.3%,80℃处理60 min抑菌活性为对照的90.9%;对pH值较敏感,在pH 5~7时活性较高;对紫外线稳定,紫外光照射12 h,其活性基本不受影响.培养基优化组合为:可溶性淀粉20 g,大豆蛋白胨5 g,NaNO3 20 g,FeSO4 0.5 g,去离子水1 000 mL;优化发酵条件为:发酵温度27℃,发酵时间5 d,初始pH 6.0,接种量5%,装液量75 mL/250 mL,摇床转速150 r min-1.图6表2参18 相似文献
3.
为提高重组大肠杆菌中顺丁烯二酸异构酶表达量,通过正交试验设计,对工程菌的生长条件和目的蛋白可溶表达条件进行优化.采用250 mL三角瓶中装有50 mL(Amp 100 mg L-1)的培养基,分别研究培养基中葡萄糖、蛋白胨、酵母浸粉的浓度,培养基pH值以及摇床转速、装液量、接种量等对蛋白可溶表达量的影响.确定顺丁烯二酸异构酶工程菌最优化培养基为:蛋白胨20 g L-1、酵母浸粉2.5 g L-1、K2HPO4·3H2O 3.0 g L-1、KH2PO4 1.5 g L-1、NaCl 6 g L-1、MgSO43 g L-1,培养基pH调至6.5.确定顺丁烯二酸异构酶工程菌可溶性表达最优条件为:37℃下培养至D600 nm值为1.0时,添加终浓度为0.05 mmol L-1的IPTG进行诱导,诱导温度37℃,摇床转速220 r min-1,装液量20%,接种量5%,诱导时长为6 h.利用BioFlo 415发酵罐以最优化的培养基和发酵条件对该工程菌进行了3批发酵实验,与摇瓶实验相比,顺丁烯二酸异构酶的表达量提高了近1.5倍,单位发酵液的酶活力由46 U mL-1发酵液提高到78 U mL-1发酵液.以上数据为顺丁烯二酸异构酶重组工程菌的中试发酵奠定了基础.图7表2参17 相似文献
4.
微生物燃料电池运行条件的优化 总被引:3,自引:0,他引:3
以葡萄糖为燃料,构建了微生物燃料电池,分别考察了离子交换膜种类(以及没有)、电极材料、电极间距、溶液离子强度(以及添加铁氰化钾)对微生物燃料电池性能的影响,结果表明:使用均相阳离子交换膜、未抛光的高纯石墨板、电极间距0.5 cm、添加 NaCl溶液和铁氰化钾将产生最大的功率密度,优化了微生物燃料电池的运行条件. 相似文献
5.
为开发微生物油脂资源,从富含油脂的土样中分离获得一株产油脂微生物——深黄伞形霉(Umbelopsisisabellina)华2-1,油脂含量达48.60%.采用单因素和正交实验方法,对深黄伞形霉华2-1的发酵培养条件进行优化研究.优化的培养条件为:葡萄糖100 g/L,酵母粉3 g/L,接种量为20%,初始pH值为5.0~6.0,MgSO4.7H2O和KH2PO4的添加浓度分别为0.5 g/L和2 g/L,培养温度为31℃,最佳发酵培养时间为168 h.华2-1在优化发酵条件下可获得菌体生物量、油脂产量和油脂含量分别为45.86 g/L、24.47 g/L和59.53%,较优化前分别提高了21.48%、33.42%和22.49%.因此,深黄伞形霉华2-1作为微生物油脂生产的新资源具有广阔的应用前景. 相似文献
6.
为开发适应性好的工业用酶,从深圳福田红树林自然保护区土壤中分离纯化获得一株产耐高温嗜碱性酯酶的菌株,通过形态学和分子生物学初步鉴定该菌株为芽孢杆菌属(Bacillus sp.),命名为Bacillus sp.W77;对所产的粗酶液进行酶活测定,发现该菌产的酯酶的最适反应温度是50℃,最适pH为8.0,且在碱性条件下较稳定;采用响应面法(Response surface methodology)对土壤菌株Bacillus sp.W77的产酯酶条件进行了优化,酵母提取物6.67 g/L,磷酸氢二钾0.56 g/L,硫酸镁0.36 g/L时,此时预测的最大酯酶活力的D405 nm值为1.266,在最佳产酶条件下,优化后酯酶活力的D405 nm值由0.829提高到1.235,实际值达到理论预测值的97.5%. 相似文献
7.
采用Illumina Miseq高通量技术分析不同温度和贮存方式下玉米秸杆(IO)和白菜废弃物(IA)贮存30 d时的微生物群落. 设置低温(O)、中温(R)和高温(H)3种温度;每种温度条件均设有秸杆单贮(O)、白菜单贮(A)和二者混贮(X)3个处理组. 结果显示,IO原料附着细菌主要包括变形菌门(Proteobacteria)(65.26%)和厚壁菌门(Firmicutes)(33.78%),IA主要包括Proteobacteria(80.23%)和拟杆菌门(Bacteroidetes)(18.57%). 贮存30 d后在属水平上,IO主要包括肠杆菌(Enterobacter)(47.11%)、肉食杆菌(Carnobacterium)(27.71%)和泛菌(Pantoea)(10.14%)等;IA主要包括假单孢菌(Pseudomonas)(48.40%)、Pantoea(17.10%)和黄杆菌(Flavobacterium)(16.26%)等;IA中几乎不含乳酸菌,IO中乳酸菌丰度约28.71%. IO组低、高温单贮时主要包括Enterobacter(21.76%和35.87%)、Carnobacterium(40.42%和27.29%)和Pseudomonas(18%和26.99%),中温单贮时主要包括Enterobacter(66.72%);IA中、高温单贮时主要包括乳杆菌(Lactobacillus)(80.07%和74.63%),低温单贮时主要包括Lactobacillus(28.43%)、耶尔森氏鼠疫杆菌(Yersinia)(19.50%)和Enterobacter(17.13%);二者低、中温混贮时主要包括Lactobacillus(52.03%和53.52%)、Enterobacter(5.98%和11.65%)和Carnobacterium(12.98%和10.65%),高温混贮时主要包括Enterobacter(70.57%). 综上表明,高通量测序技术全面反映了IO和IA在不同贮存条件下细菌群落的组成及丰度信息,白菜中高温单独贮存、秸秆/白菜中低温混合贮存时乳酸菌占优势. (图9 表3 参37) 相似文献
8.
重组大肠杆菌产CotA漆酶的发酵条件优化 总被引:1,自引:0,他引:1
CotA漆酶在环境保护、食品工业和纸浆漂白等工业中具有重要的应用价值.将重组表达载体pET-22b/CotA转入大肠杆菌BL21(DE3),得到工程菌株,采用单因素实验和正交实验相结合的方法,研究诱导表达条件和发酵培养基对重组大肠杆菌产CotA漆酶量的影响.结果表明,初始pH 7.5的培养基中,添加0.6 mmol L-1 Cu2+,1 g L-1葡萄糖作碳源、15 g L-1蛋白胨和2 g L-1硫酸铵作氮源,以10%的接种量,37℃、200 r/min,直到菌液的D600 nm值为1.0,加入终浓度为1.0 mmol L-1的IPTG,25℃诱导12 h,漆酶的产量最高.优化前发酵液的粗提液的漆酶活性仅为1 190 U mL-1,优化后达到3 526 U mL-1,正交实验优化后漆酶活性提高了2.96倍.纯化的CotA漆酶最适反应温度为45℃,最适pH值为7.2.CotA漆酶对RBBR的脱色率在90%以上,此CotA漆酶在短时间内对染料能够有效地脱色,能够成为有潜力的工业用酶.图6表3参17 相似文献
9.
利用红薯粗淀粉酶解液为碳源进行发酵试验,采用单因素和均匀设计试验法对掷孢酵母(Sporobolomycesreseus)As.2.618产油脂发酵培养基进行优化,考察了二价金属离子及氧载体正十二烷对油脂积累的影响,以期降低微生物油脂的成本.通过DPS软件对均匀设计结果进行二次逐步回归分析,给出最优培养基组成(pig L-1)为:还原糖103、酵母粉11.5、磷酸二氢钾0.3、硫酸镁0.15.在此基础上添加30 mg L-1硫酸锌.在发酵条件为初始pH 6.0,发酵温度27℃转速200 r/min,装液量30 mL/500 mL三角瓶,接种量5%,发酵24 h后添加2 g L-1 CaCO3和2%(V/V正十二烷,振荡培养至168 h,菌体生物量高达35.05 g L-1,油脂产量也达到11.98 g L-1. 相似文献
10.
为丰富高产油菌株资源和促进微生物油脂工业化进程,通过苏丹黑B染色对土壤样品进行产油菌种筛选,并进一步优化发酵条件以提高产油率.共筛选到33株产油真菌,其中17株油脂含量较高,菌株ZWY-2-3油脂含量最高,经5.8S rDNA-ITS序列分析,将其鉴定为隐球酵母(Cryptococcus podzolicus).菌株ZWY-2-3初始生物量、油脂产量和油脂含量分别为7.786 g/L、4.331 g/L和55.63%,经单因素和正交试验优化后分别提高到13.670 g/L、8.311 g/L和60.80%.利用GC-M S对油脂进行脂肪酸成分分析,主要成分为棕榈酸、软脂酸、硬脂酸和油酸,与植物油相似,适合用于生产生物柴油.本研究表明,菌株ZWY-2-3是生产生物柴油的潜在菌株,具有广阔的应用前景.图6表5参26 相似文献
11.
环境微生物群落分析的T-RFLP技术及其优化措施 总被引:21,自引:1,他引:21
末端限制性酶切片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)是近年来发展起来的、不依赖于培养的微生物群落分析方法之一.由于其在微生物群落结构分析方面的特点,包括分辨率高、易于实现自动化及互联网海量数据共享等优势,自1997年最先被报道以来得到了广泛的应用,成为环境微生物群落分析的最强有力的工具之一.本文详细介绍了T-RFLP技术的原理,并从环境样品群落DNA的提取、引物设计和PCR扩增、限制性酶切、电泳分离检测和T-RFLP图谱解析等5个方面讨论了用该技术解析环境微生物群落的方法和技巧,简述了近8 a来国外T-RFLP技术在群落分析中的研究进展.类似于其他的分子微生物生态学技术, T-RFLP也有自身的缺陷,因此重点分析了该技术的局限性及相应的解决办法.图2表1参62 相似文献
12.
均匀设计法优化樟芝产三萜液体发酵条件 总被引:1,自引:0,他引:1
为在兼顾生物量的基础上提高液体发酵中三萜的百分含量,首先通过单因子试验筛选出最佳的碳源、氮源、无机盐,然后采用均匀设计(UD)对其培养基配比和培养条件进行优化试验,建立适当的数学模型,并对模型进行验证确定优化条件.单因子试验结果表明玉米淀粉既能促进菌丝体的生长,又能促进三萜的合成;麸皮虽然对菌体生长略有不利,但是对三萜的积累作用特别显著;硫酸镁对菌丝体生长效果不显著,但是对三萜的合成比较有利.均匀设计试验结果表明,菌丝体干重最大的培养条件和三萜的最优培养条件相差甚远.菌丝体干重的最优培养条件为:1 L培养液中玉米淀粉47 g,麸皮47 g,硫酸镁0.5 g,初始pH 3.0,培养7 d;三萜最佳培养基配方为:1 L培养液中玉米淀粉20 g,麸皮20 g,硫酸镁1.85 g,初始pH 3.0,培养16 d.菌丝体干重在最优条件下能达到15.58(±0.37)g L-1;三萜百分含量在最优培养条件下高达6.04(±0.03)%,三萜的百分含量比基础发酵结果和报道的最高发酵结果3.18%提高了90%,因此,均匀设计法能有效优化液体发酵培养条件 相似文献
13.
一株烟草内生拮抗放线菌发酵条件优化 总被引:1,自引:0,他引:1
为提高烟草内生放线菌Y12发酵时产生抑菌物质的产量,通过摇瓶正交优化试验,确定了Y12的三角瓶发酵条件.发酵培养基组成为:黄豆粉1.5%,蛋白胨1.5%,葡萄糖1.5%,可溶性淀粉1.5%,MgSO4.7H2O 0.05%,(NH4)SO40.25%,NaCl 0.4%,KH2PO4 0.1%,CaCO3 0.5%;培养基初始pH 7.5,培养温度30℃,发酵时间72 h.经过优化发酵液的抑菌圈直径增加了44.9%. 相似文献
14.
15.
土壤微生物链霉菌6803菌株被证明对高等植物具有化感作用。采用单因子实验方法,研究液体发酵碳源、氮源、无机盐、发酵温度、发酵液初始pH值、摇床转速、发酵时间等对链霉菌6803菌株菌丝体产量及发酵液化感作用的影响,用均匀试验设计法优化了发酵工艺条件。结果表明:链霉菌6803菌株生长和产生化感作用的最佳发酵条件为:p(淀粉)=26.67g·L-1,p(蔗糖)=25.15g·L-1,p(NH4C1)=0.30g.L-1,黄豆饼粉浸液8.88%,所(NI-h)H2P04]=O.18g·L-1,p(FeS04.7H20)=O.002g·L-1,p(NaCl)=0.75g·L-1,pH值7.6,装量系数O.16,接种量3%,温度36℃,转速200r·min-1,发酵144h。本研究为利用微生物次生代谢产物作为天然除草剂奠定了基础。 相似文献
16.
Enterobacter cloacae B5产转糖基β-半乳糖苷酶发酵条件优化 总被引:1,自引:0,他引:1
β-半乳糖苷酶是一类非常重要的糖苷水解酶,已被广泛应用于食品工业降低乳制品中的乳糖含量.某些种类的β-半乳糖苷酶还具有转糖基活性,近年来被应用于合成低聚半乳糖和半乳糖苷化合物.通过单因子试验和正交试验,对肠杆菌Enterobacter cloacae B5产生转糖基β-半乳糖苷酶的培养基组成及发酵条件进行了优化.结果表明,以无机盐溶液Ⅰ(CaCl2 0.011%、MnSO4 0.0001%、MgSO4·7H2O 0.03%、KH2PO4 0.005%、FeSO4·7H2O 0.003%)、乳糖1.5%、酵母粉2%、蛋白胨0.5%、起始pH 8.5的培养基在25℃培养E.cloacae B5菌株38 h,产酶量达到最高值4.663U mL-1,大约是未优化时的3倍.通过优化产酶条件提高了全细胞酶源的酶活量,不仅为功能性低聚半乳糖的生产降低了成本,同时也为商业化β-半乳糖苷酶的大量提纯降低了成本.图2表4参12 相似文献
17.
生防枯草芽孢杆菌SQR9固体发酵生产生物有机肥的工艺优化 总被引:2,自引:0,他引:2
枯草芽孢杆菌SQR9是一株广谱性的拮抗菌,为促进农业废弃物的资源化利用以及植物土传病害的生物防治,分别以氨基酸有机肥、牛粪堆肥、猪粪堆肥、中药渣堆肥为原料,研究利用SQR9进行二次固体发酵生产微生物有机肥的最佳工艺条件及其原料最佳配比.结果表明,SQR9固体发酵的最佳参数为:发酵最佳原料为中药渣堆肥,接种量10%(φ/mL g-1),麸皮添加量15%,初始含水量65%,发酵温度37℃,翻抛次数1次/24 h,在此发酵条件下,SQR9菌株的活菌总量可达到1.20×1011CFU g-1.中药渣堆肥︰牛粪堆肥︰猪粪堆肥︰氨基酸有机肥的最佳配比为为40︰6︰0︰8,在此原料配比和最佳发酵条件下,SQR9活菌总量可达1.97×1010CFU g-1.因此,用农业废弃物采用合适的工艺条件可以生产出高质量的生物有机肥. 相似文献
18.
一株碱性果胶酶高产细菌的分离、系统发育分析和产酶条件的初步优化 总被引:27,自引:0,他引:27
从腐烂的苹果表皮筛选到一株碱性果胶酶的高产菌株,命名为WSHB04-02.分离菌株为革兰氏阳性细菌,有芽孢,菌落颜色为乳白色.分离菌株WSHB04-02的16SrDNA全序列分析表明,该菌株与Bacillussubtilus具有99%的相似性,并与其他13株产碱性果胶酶菌株的16SrDNA结果进行同源性分析,并构建系统发育树.发现菌株WSHB04-02在不含果胶类物质与Mg2 的培养基上能高产碱性果胶酶,在优化的培养条件下,碱性果胶酶的酶活达到34U/mL,在国内还未见报道.图6表2参15 相似文献
19.
为促进自养高产油微藻的工业化应用,从青海多种生境中分离到34株产油微藻,以筛选获得产油脂最高的青3-2-2株为出发株,18S rRNA分析表明其与栅列藻属(Scenedesmus sp.)同源性达到99%以上,确定该株属于栅列藻属.研究氮源、培养时间、培养温度、初始pH值等培养条件对微藻生物量及油脂含量的影响,优化培养条件为:硝酸钠为氮源,以10%(V/V)接种量接种于普通SE培养基,培养温度为25℃,初始pH 7.0,培养周期为20 d,可以获得较高的油脂产率,比优化前的产率增加了近70%. 相似文献
20.
苏云金芽孢杆菌生物杀虫剂发酵生产的影响因素及其工艺选择 总被引:2,自引:0,他引:2
化学杀虫剂的长期使用给生态环境造成了严重破坏,也使害虫种群的抗药性日益提高,生物杀虫剂以其"绿色环保"的特点引起人们的广泛关注。其中,苏云金芽孢杆菌(Bacillus thuringiensis)制剂是目前世界上产量最大、应用最广的生物杀虫剂。它对鳞翅目、双翅目、鞘翅目、螨类等许多有害昆虫有毒杀作用,而对人类、动物和农作物无害。长期以来,人们一直致力于苏云金芽孢杆菌发酵过程的研究,以期获得高毒效的生物杀虫剂产品。本文首先对苏云金芽孢杆菌发酵生产的各种影响因素进行了综合分析,将影响因素分为培养条件和培养基组分两类,得出最佳培养条件为温度:(30±1)℃,pH:7.0±0.1,搅拌速度:400~600r·min-1,通气量:1∶0.6~1.2(发酵培养基体积与每分钟通入空气的体积之比),接种时间:对数期初;最佳培养基配比为碳氮比:8~10∶1,无机盐含量:KH2PO4或K2HPO4为0.075%~0.2%;MgSO4·7H2O为0.075%~0.3%;CaCO3为0.075%~0.15%;MnSO4·H2O、FeSO4·7H2O各为0.002%。其次,对当前研究与工业化生产中的各种发酵工艺进行了评述,总结了现有发酵工艺的优缺点。在现有研究基础上,降低培养基原料成本、改进发酵工艺和采用基因学手段构建高效工程菌株将成为未来研究热点。 相似文献