共查询到19条相似文献,搜索用时 46 毫秒
1.
短程硝化的实现、维持与过程控制的研究现状 总被引:18,自引:0,他引:18
短程生物脱氮技术目前倍受人们的关注,国内外学者对短程硝化提出了多种实现及维持的控制途径,但仍存在着一些问题。由于活性污泥法中DO,ORP,pH的变化规律从不同角度不同程度地反映了生物脱氮反应的进程,所以用它们作为控制参数就可以对生物脱氮反应进行过程控制。在分析中,通过对国内外短程硝化控制途径的研究现状与发展趋势的分析和总结,针对目前在实现短程硝化及维持短程硝化各种途径中存在的问题,提出了通过在线检测DO,pH,ORP来实现与维持短程硝化的新思路。 相似文献
2.
3.
DO和pH值在短程硝化中的作用 总被引:16,自引:0,他引:16
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用。本试验条件下。当DO为0.5~1.0mg/L、pH值为7.5—8.0时。在SBR反应器中很容易实现短程硝化;当DO〉0.3mg/L时,DO越低,出水NO2^-N积累率越高;当pH值〉6.8时,不会影响系统NO2^-N积累的稳定性。另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化。本试验条件下,当进水氨氮浓度为120mg/L时,控制DO为0.3—0.4mg/L可实现出水半亚硝化;当进水氨氮浓度为200mg/L时,控制DO为0.5—0.6mg/L或pH值为6.8也可以实现出水半亚硝化。 相似文献
4.
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用.本试验条件下,当DO为0.5~1.0 mg/L、pH值为7.5~8.0时,在SBR反应器中很容易实现短程硝化;当DO>0.3 mg/L时,DO越低,出水NO2--N积累率越高;当pH值>6.8时,不会影响系统NO2--N积累的稳定性.另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化.本试验条件下,当进水氨氮浓度为120 mg/L时,控制DO为0.3~0.4 mg/L可实现出水半亚硝化;当进水氨氮浓度为200 mg/L时,控制DO为0.5~0.6 mg/L或pH值为6.8也可以实现出水半亚硝化. 相似文献
5.
6.
常温(26~30℃)下应用连续流短程硝化反硝化工艺处理模拟城市生活污水,对连续流短程硝化反硝化污泥的运行参数进行了研究.结果表明,在常温、进水NH4 -N为50 mg/L、曝气区pH为7.5~8.0、曝气量为0.3 L/min、曝气区水力停留时间为4 h的条件下,NO2- -N/(NO3- -N NO2- -N)达0.677,TN去除率为35%左右;在上述条件下,无需调节曝气区pH,选择前置反硝化区与曝气区的体积比为1:2、前置反硝化区水力停留时间为2 h、回流比为2:1时,连续流短程硝化反硝化工艺的TN去除率达88.9%,COD去除率达92.7%;pH的变化规律正确反映了系统运行状况,可作为系统运行的实时控制参数. 相似文献
7.
短程硝化-反硝化生物脱氮过程的影响因素研究 总被引:2,自引:0,他引:2
短程硝化-反硝化,是将硝化过程控制在亚硝化阶段,随后在缺氧条件下进行反硝化的生物脱氮过程,其关键是如何控制硝化过程中影响HNO2积累的因素。分析结果表明:影响NO2^--N积累的主要因素为温度、游离氨、pH值、溶解氧、有害物质和泥龄,并提出了实现短程硝化一反硝化的控制条件。 相似文献
8.
9.
为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO2--N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L-1、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO2--N积累率、NO2--N/NH4+-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH4+-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH4+-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。 相似文献
10.
固定化活性污泥实现短程硝化反硝化处理畜禽废水 总被引:3,自引:1,他引:3
以畜禽废水为处理对象,通过分别控制水力停留时间(HRT)、溶解氧(DO)、pH值、温度和碳氮比(C/N)等影响亚硝化的主要单因子,以使固定化活性污泥颗粒实现短程硝化反硝化反应,在连续流运行模式下进行废水脱氮实验,实验结果表明,单因子HRT为10 h,溶解氧为4 mg/L,pH值为8.5,温度为30℃,碳氮比为10时,对TN和COD的去除率分别为81.98%、93.79%;87.32%、98.35%;83.82%、93.93%;85%、97%;85.37%、97.28%,达到了理想的去除效果。 相似文献
11.
控制DO及FA条件下短程硝化过程系统稳定性研究 总被引:5,自引:0,他引:5
采用SBR工艺以水产品加工废水为研究对象,同时控制进水游离氨(FA)为0.96~1.25mg!L,溶解氧(DO)为1~2mg/L,实现了稳定的短程硝化过程。在此条件下,亚硝化率及氨氮去除率分别大于95%和88%,有机物(COD)去除率在90%以上,亚硝化速率维持在0.9666×10^-3-1.0375×10^-3mgNO2-N/(mgMLSS·h)之间。研究结果表明,同时控制DO及FA在适当范围之内可以获得稳定的短程硝化过程,并可降低系统能耗。本实验采用较低的FA浓度与较高的DO浓度(与OLAND工艺比较)得到了稳定的短程硝化过程,对水产品加工废水处理具有重要应用价值。 相似文献
12.
SBR快速实现短程硝化及影响因素 总被引:5,自引:0,他引:5
基于建立的序批式反应器(SBR),探索实现城市生活污水短程硝化的主要控制因素。研究结果表明,废水温度维持在(30±1)℃、pH值为7.8~8.2的条件下,采用间歇曝气的运行方式,仅驯化培养29 d,成功实现短程硝化,亚硝氮积累率为95%左右。通过对比发现,间歇曝气方式优于连续曝气方式,间歇曝气能有效地将溶解氧(DO)浓度控制在1.0 mg/L以下,从而有利于进行短程硝化反应。此外,温度和pH可以影响亚硝氮的积累效果;当温度在25~35℃、进水pH为7.8~8.2时,亚硝氮的积累情况较好,积累率在91%以上。 相似文献
13.
采用一体化膜生物反应器处理模拟氨氮废水,通过改变温度、pH、DO实现了反应器中短程硝化的稳定运行。结果表明,在进水氨氮、COD分别为67~86、240~342 mg/L的情况下,当温度为30℃、进水pH为8.1时,通过逐渐降低DO至1.2mg/L,亚硝态氮得到富集,氨氮和COD的去除率均能达到80%以上,且系统的耐冲击负荷能力较好;整个运行期间保持了较高的混合液悬浮固体浓度(MLSS),处于3 200~8 210mg/L,污泥沉降比和污泥体积指数(SVI)相对稳定,SVI处于75~138mL/g。 相似文献
14.
利用硫化物对亚硝酸盐氧化菌的抑制作用,快速建立短程硝化。通过改变供氧条件,硫化物作为电子供体推动自养反硝化,实现同一序批反应器一体化脱氮。采用序批反应器SBR处理模拟市政污水,在DO浓度(1.5±0.5) mg·L-1,硫化物浓度50 mg·L-1,温度25 ℃,水力停留时间12 h的条件下,共运行90 d,控制反应器厌氧低氧时间,达到90%以上的总氮去除率。同时研究了硫化物对短程硝化的抑制作用、最适宜运行pH条件、污泥颗粒大小变化、污泥产生量等。硫化物抑制亚硝酸盐氧化菌推动短程硝化反硝化生物脱氮技术有着反应条件可控性高、短程硝化建立时间短、脱氮效果好等优点,适用于低碳氮比的市政污水处理。 相似文献
15.
利用玻纤管作为膜组件材料制作了一套动态膜生物反应器(DMBR),并结合A/O工艺组成DMBR -A/O污水处理装置,研究了其在全程硝化反硝化(阶段I)和短程硝化反硝化(阶段II)条件下对生活污水的处理效果、膜污染状况及恢复膜通量的措施。结果表明:当运行通量为15 L·(m2·h)-1时,阶段I可连续运行15 d,而阶段II可连续运行30 d;水力停留时间为8 h时,阶段I、II对COD、NH4+-N去除率均大于85%,差别不明显,但对TN的去除率分别为58%和75%。因此,与全程硝化反硝化相比,短程硝化反硝化可显著缓解膜污染,并可显著提高脱氮效率。此外,被污染后的膜组件经水力冲洗和0.05%NaClO溶液浸泡12 h后,几乎能够完全恢复膜组件性能。 相似文献
16.
人工湿地中的SND机理以及DO、pH对其的影响 总被引:11,自引:0,他引:11
人工湿地中的水生植物向系统中输送大量的DO,并为系统中的微生物提供栖息地,使得系统中连续同时发生硝化和反硝化(SND)反应。DO的高低直接影响到人工湿地系统SND的效果,根据SND的发生机理,可采用复合植物床(系统前端栽种泌氧能力强、后端泌氧能力稍弱的水生植物)和间歇运行的的方式来改善整个系统的脱氮能力。pH过高或过低都会抑制人工湿地系统的SND作用,最适宜值为7.0,据此可以选择适当pH的湿地填料来提高系统的SND作用。 相似文献
17.
采用SBR反应器,在25℃下,以不同比例的NO-3N和NO-2N作电子受体,对内源反硝化脱氮过程中的pH、ORP变化进行了研究。结果表明,ORP在内源反硝化过程中呈现逐渐减小的趋势,当反硝化结束时突然大幅度降低而出现特征点;内源反硝化过程中的pH值变化则与起始pH值和硝态氮浓度有关,当初始pH值较小、硝态氮浓度较低时,内源反硝化过程中pH极大值只出现一次,pH值呈现出先增大后减小的规律性变化,指示反硝化结束的特征点准确出现;当初始pH值较高、或者硝态氮浓度足够高时,则pH值在反应后期将维持在某个值附近并波动,指示反硝化结束的特征点不明显,此种情况下,以ORP来指示内源反硝化过程的结束较为可靠。 相似文献
18.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。 相似文献