首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper compares the patterns of metal (Pb, Zn, Cd, Cu) accumulation in nine populations of the epigeic earthworm, Lumbricus rubellus, native on metalliferous soils, with the patterns of metal accumulation in batches of L. rubellus sampled from an uncontaminated site and maintained on the nine contaminated soils for 31 days under laboratory conditions. The primary findings were: (1) the Pb, Zn and Cd concentrations in the 'native' worms were significantly higher in most cases than in the 'introduced' worms; (2) multiple regression analyses indicated that the relationships between tissue and soil metal concentrations were similar for 'native' and 'introduced' worms; (3) high soil organic matter content reduced the bioavailability of Pb, but low pH increased Pb bioavailability. It was concluded that, although no phenotypic evidence of metal-tolerant ecotypes was obtained, the exposure of earthworms from uncontaminated soils to contaminated soils under laboratory conditions can provide meaningful integrative data concerning metal bioavailability in soils which, for biomonitoring purposes, often present formidable sampling problems.  相似文献   

2.
Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC50s for 14 and 28 days were 5311 and 5395 microgPb g(-1)soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 microgPb g(-1)soil. The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 microg g(-1) soil accumulated lead at a faster rate (3.16 microg Pb g(-1)tissue day(-1)) than those in the 3000 microg g(-1) soil (2.21 microg Pb g(-1)tissue day(-1)). The third experiment was a timed experiment with worms cultivated in soil containing 7000 microgPb g(-1)soil. Soil and lead nitrate solution were mixed and stored at 20 degrees C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of worms shortly after addition of Pb to soils may result in the over-estimate of Pb toxicity to worms. The current OECD acute worm toxicity test fails to take these two phenomena into account thereby reducing the environmental relevance of the contaminant toxicities it is used to calculate.  相似文献   

3.
Seasonal changes in soil pH, sulphate concentration and total-S were measured in two brown earth soils, sampled from deciduous woodlands. One site studied was exposed to severe atmospheric pollution from a coking works while the other site was relatively unpolluted but located in an area receiving wet and dry deposited acidity of greater than 1.0 and 2.4 kg H(+) ha(-1) year(-1), respectively The pH of soil at the heavily polluted site was lower than the relatively unpolluted soil at each monthly sample point, except during November. Annual average sulphate concentrations (LiCl-extractable) were highest in the soil exposed to coking pollution, where they peaked during summer and autumn. A marked difference in total-S was found in soils from the two sites, the heavily polluted soil showing the highest concentration with peaks again occurring during late summer and autumn. Only 4.0% (w/w) of the total-S of the heavily polluted soil occurred as LiCl-extractable sulphate, compared to 21.4% (w/w) for the relatively unpolluted soil, showing that organic sulphur is increased in brown earths following exposure to severe atmospheric pollution from the coking works.  相似文献   

4.
Bioconcentration and biokinetics of heavy metals in the earthworm   总被引:3,自引:0,他引:3  
This study examines the steady state and non-steady state kinetics of five metals, cadmium, copper, lead, nickel, and zinc in earthworms. The steady state kinetics are based on field studies in which worms from contaminated and uncontaminated sites were collected and measurements were made of concentrations in the earthworms and soils. For each of the metals, evidence suggests that bioconcentration depends on the metal concentrations in the soil; bioconcentration is greater at lower soil concentrations. The studies of non-steady state kinetics involve uptake and elimination experiments in which worms are transferred from an uncontaminated soil to a contaminated soil (uptake studies) or from a contaminated soil to an uncontaminated soil (elimination studies). The voiding time is shown to be an important experimental variable in determining the measured levels of metal in earthworms because experimental measurements are usually made on a worm-soil complex (i.e. the soft tissue of the worm and the soil in the gut of the worm). Thus, for metals that are bioconcentrated in worm tissue, increasing the voiding period increases the concentration of the metal in the worm-soil complex. Conversely, for metals that are not bioconcentrated, increasing the voiding time leads to a decrease in concentrations in the worm-soil complex.  相似文献   

5.
Interactions between earthworms and arsenic in the soil environment: a review   总被引:10,自引:0,他引:10  
Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes.  相似文献   

6.
The potential influence of earthworm activity on the mobility of radionuclides in soils and their subsequent availability for uptake by plants and transfer to higher trophic levels is briefly reviewed. The accumulation of caesium by the earthworm Aporrectodea longa from soil and from plant litter was investigated in laboratory experiments, as was the effect of reworking (through burrowing and ingestion) soil and soil with added organic material, on the extractability of caesium (ammonium acetate extraction). Soil was spiked with (134)Cs, organic matter with (137)Cs. In soil-fed worms, most of the radioactivity measured was eliminated with the gut contents; 5-25% of the ingested radioactivity was retained or assimilated. Loss of caesium from soil-fed worms followed a two component curve, with an initial rapid loss due to gut clearance (half-life of loss (Tb1/2) of about 0.2-0.6 days) and a slower loss of assimilated caesium (Tb1/2 of 15-26 days). Loss rates of assimilated caesium from worms fed on fragmented apple leaves were found to have half-lives of 18-54 days. Assimilation of caesium from apple leaves was higher than from soil, ranging from 55-100% of the activity measured before gut clearance. Dry weight transfer factors (concentration in worm tissue/concentration in substrate) for worms cleared of their gut contents were similar for the two substrates 0.04 and 0.04 for two loss experiments with worms fed on radioactive soil, and 0.03 and 0.05 for worms fed on apple leaves. After three months of reworking soil and soil/organic mixtures, A. longa was found to have no measurable effect on the extractable fraction of caesium. If earthworms have any subtle effects they were masked by changes in availability that occurred when the spiked soil and organic substrates were mixed together. Only about half of the extractable fraction in soil was recovered when soil was mixed with organic material suggesting that some of the labile fraction in soil had become complexed with organic material. This exchange occurred in substrate mixtures with and without worms. The limitation of chemical extraction procedures is discussed and suggestions for further work are presented.  相似文献   

7.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   

8.
The aim of this study was to evaluate the toxicological responses of earthworm (Eisenia fetida) induced by field-contaminated, metal-polluted soils. Biochemical responses and DNA damage of earthworm exposed to two multi-metal-contaminated soils in a steel industry park and a natural reference soil in Zijin Mountain for 2, 7, 14, and 28 days were studied. Results showed that three enzyme activities, including superoxide dismutase (SOD), acetylcholinesterase (AChE), and cellulase, in earthworm in metal-contaminated soils were significantly different from those of the reference soil. Cellulase and AChE were more sensitive than SOD to soil contamination. The Olive tail moment of the comet assay after 2-day exposure increased 56.5 and 552.0 % in two contaminated soils, respectively, compared to the reference soil. Our findings show that cellulase and DNA damage levels can be used as potential biomarkers for exposure of earthworm to metal-polluted soils.  相似文献   

9.
ABSTRACT

The aim of this study was to determine the elemental composition, phenolic content and composition and antioxidant properties of Imleria badia (Fr.) Vizzini (former names Boletus badius (Fr.) Fr., and Xerocomus badius (Fr.) E.-J. Gilbert) fruiting bodies collected from sites with different levels of pollution. Imleria badia was relatively tolerant to soil contamination with toxic elements and was able to grow in As, Cd, Hg and Pb concentrations exceeding 15, 2.9, 0.4 and 77 mg kg?1, respectively. The concentration of elements in soil was reflected in the element content in I. badia. The fruiting bodies from polluted sites exhibited significantly higher content of all the analyzed elements. Among 21 individual phenolic compounds only protocatechiuc and caffeic acids, and quercetin were determined in fruiting bodies of I. badia. The differences between the concentration of the quantified phenolic compounds and the total flavonoid content in fruiting bodies of I. badia from unpolluted and polluted sites were not significant. However, the greatest total phenolic content was found in fruiting bodies from the polluted areas. The antioxidative capacity of mushrooms collected from heavily polluted sites was lower than those growing in unpolluted areas. The concentrations of some metals in soil and fruiting soil were positively correlated with phenolic content and IC50.  相似文献   

10.

The mobility (fractionation) of rare earth elements (REEs) and their possible impacts on ecosystems are still relatively unknown. Soil samples were collected from two sites in central Serbia, an unpolluted mountain region (site 1) and a forest near a city (site 2). In order to investigate REE fractions (acid-soluble/exchangeable, reducible, oxidizable, and residual) in soils, BCR sequential extraction was performed. Additionally, the content of REEs was also determined in stipes and caps of the mushroom Macrolepiota procera, growing in the observed sites. Sc, Y, and lanthanide contents were determined by inductively coupled plasma mass spectrometry (ICP-MS), and results were subjected to multivariate data analysis. Application of pattern recognition technique revealed the existence of two distinguished clusters belonging to different geographical sites and determined by greater levels of Sc, Y, and lanthanides in Go? soil compared to Trstenik soil. Additionally, PCA analysis showed that REEs in soil were concentrated in two groups: the first consisted of elements belonging to light REEs and the second contained heavy REEs. These results suggest that the distribution of REEs in soils could indicate the geographical origin and type of soil. The bioconcentration factors and translocation factors for each REE were also calculated. This study provides baseline data on the rare earth element levels in the wild edible mushroom M. procera, growing in Serbia. In terms of bioconcentration and bioexclusion concept, Sc, Y, and REEs were bioexcluded in M. procera for both studied sites.

  相似文献   

11.
Metal tolerance and phytoextraction potential of two common sorrel (Rumex acetosa L.) accessions, collected from a Pb/Zn contaminated site (CS, Lanestosa) and an uncontaminated site (UCS, Larrauri), were studied in fertilized and non-fertilized pots prepared by combining soil samples from both sites in different proportions (i.e., 0%, 33%, 66% and 100% of Lanestosa contaminated soil). The original metalliferous mine soil contained 20480, 4950 and 14 mg kg(-1) of Zn, Pb and Cd, respectively. The microcosm experiment was carried out for two months under greenhouse controlled conditions. It was found that fertilization increased mean plant biomass of both accessions as well as their tolerance. However, only the CS accession survived all treatments even though its biomass decreased proportionally according to the percentage of contaminated mine soil present in the pots. This metallicolous accession would be useful for the revegetation and phytostabilization of mine soils. Due to its high concentration and bioavailability in the contaminated soil, the highest values of metal phytoextracted corresponded to Zn. The CS accession was capable of efficiently phytoextracting metal from the 100% mine soil, indeed reaching very promising phytoextraction rates in the fertilized pots (6.8 mg plant(-1) month(-1)), similar to the ones obtained with hyperaccumulator plants. It was concluded that fertilization is certainly worth being considered for phytoextraction and revegetation with native plants from metalliferous soils.  相似文献   

12.
Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead–zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead–zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain.  相似文献   

13.
Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography–mass spectrometry could be correctly predicted by NIRS (Q2 = 0.75, R2 = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg−1 or when the sample set was rather homogeneous (Q2 = 0.91, R2 = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg−1, nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone.  相似文献   

14.
Floodplains of the European rivers Rhine and Meuse are heavily polluted. We investigated the risk of heavy metal pollution (Cd, Cu, Pb, Zn) for detritivores living in a floodplain area, the Biesbosch, the Netherlands, affected by these rivers. Total soil, pore water and 0.01 M CaCl(2) extractable concentrations and concentrations in plant leaves, earthworms, isopods and millipedes were measured in two sites and compared with literature data to assess possible risks. Based on total metal concentrations in soil, serious effects on detritivores were expected. However, 0.01 M CaCl(2) extractable, pore water and plant leaf concentrations were similar to metal concentrations found in unpolluted areas. Concentrations of Cu and Cd in earthworms and Cu in millipedes were higher in the Biesbosch than in animals from reference areas. All other measured concentrations of heavy metals in earthworms, isopods and millipedes were similar to the ones found in reference areas. Despite high total soil concentrations, effects of Zn, Cu, Pb and Cd pollution on isopods are therefore not expected, while millipedes may only be affected by Cu. Since Cu and Cd levels in earthworms were increased compared to animals in unpolluted soils, this faunal group seems to be most at risk. Given the engineering role of earthworms in ecosystems, effects on the ecological functioning of floodplain soils therefore cannot be excluded.  相似文献   

15.
16.
Lock K  Janssen CR 《Chemosphere》2003,53(8):851-856
The pore water zinc concentration and the calcium chloride extracted zinc fraction are higher in the soils spiked with a zinc salt (ZnCl2) compared to soils spiked with zinc oxide or zinc powder. Based on total zinc concentrations in the soil, the acute toxicity of zinc salt to the compost worm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida was lower compared to zinc oxide and zinc powder. However, when expressed on the basis of pore water concentrations or calcium chloride extracted fractions, acute toxicity was higher for zinc salt, which indicated that dermal uptake via the pore water is not the only route of uptake. Chronic toxicity of zinc salt, zinc oxide and zinc powder was similar when based on total concentrations in the soil which again indicates that the pore water route of uptake is not the only route of exposure but that oral uptake is also important.  相似文献   

17.
The carpophores of Parasol Mushroom and underlying soil substrate collected from several unpolluted and spatially distant sites across Poland were examined to know content and bioconcentration potential of mercury by this species. The total mercury content of the caps of Parasol Mushroom for the particular sites ranged from 1.1 ± 1.0 to 8.4 ± 7.4 μ g/g dry matter (total range from 0.05 to 22 μ g/g dm), while in the stalks were from 0.53 ± 0.27 to 6.8 ± 7.1 μ g/g dm (total range from 0.078 to 20 μ g/g dm). A top soil layer (0–10 cm) showed baseline mercury concentration from 0.022 ± 0.011 to 0.36 ± 0.16 μ g/g dm (total range from 0.010 to 0.54 μg/g dm). Parasol Mushroom is an effective mercury accumulator in the carpophores and bioconcentration factor (BCF) values of this element in the caps and depending on the sampling site ranged from 16 ± 6 to 220 ± 110 (total range from 0.52 to 470), while for the stalks were from 7.6 ± 2.6 to 130 ± 96 (total range from 0.52 to 340). It seems reasonable to state that tolerance (maximum allowable concentration) of the total mercury in a single cap of Parasol Mushroom at unpolluted areas should not exceed 25 μ g/g dm. A value greater then 25 μ g/g dm will imply an elevated content due to site pollution problems. Nevertheless, knowledge on highly toxic methylmercury content and its fraction in the total mercury content of Parasol Mushroom is lacking.  相似文献   

18.
The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day?1, less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0–1 cm layer of soils. Only 5–7% of each pesticide was recovered from the 1–2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2–10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5–10% of the applied thiobencarb and between 10–20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.  相似文献   

19.
The present study reports on the mercury concentrations of the vestimentiferan worm, Lamellibrachia satsuma, (Annelida: Pogonophora) found near hydrothermal vents at a depth of 80-100 m in the northern parts of Kagoshima Bay. The vestimentiferan worms had total mercury concentrations of 238 ng/g in the anterior muscle of the body and 164 ng/g in the posterior trophosome. Methylmercury constituted only 7.6% of total mercury detected anteriorly and 16.3% posteriorly. The mean total mercury concentration in filtrated ambient seawater of the worm habitat was 1.1 ng/l. The worm should accumulate mercury in seawater by a one-step into the anterior and posterior parts as 2.2 x 10(%) and 1.5 x 10(5) times those of the filtered ambient seawater, respectively. The bioaccumulation factor of mercury by the worms with only their respiration would be actually larger than that by other marine animals through food webs. The high bioaccumulation factor of mercury in the worms suggest the following two possibilities: (i) the biological half-life of organomercury in the worm could be exceptionally long; or (ii) the lifetime of vestimentiferan worms examined in the present study could be extremely long. Various metals in one specimen of the worm were analyzed by using ICP-MS, and then gold as well as silver were detected in the worm. Gold was detected for the first time from marine animals.  相似文献   

20.
The tissue distribution of Cd, Cu, Pb, Zn and Ca in the endogeic earthworm Aporrectodea caliginosa living in a non-polluted and a heavy metal polluted soil was investigated. The tissues of animals from the contaminated soil contained greater concentrations of Cd, Pb and Zn than the corresponding tissues of animals from the unpolluted soil. The greatest concentrations of Cd, Pb, Zn, and Ca were primarily accumulated within the posterior alimentary canal (PAC), a tissue fraction which contained the greatest proportion of the whole-worm burdens of the respective metals. Cu was distributed fairly evenly in the tissue fractions investigated. The pattern of accumulation for the 'heavy' metals is broadly similar to that for epigeic earthworms; in contrast, a different pattern of tissue accumulation was found for Ca. In animals from the uncontaminated site, the major elemental constituents of the chloragosomes were P, Ca, Zn and S. A significant positive correlation exists between P and Ca within the chloragosomal matrix. These intracellular vesicles are major foci for Pb and Zn accumulation within the PAC, with 'excess' metals associated with P ligands within the chloragosome matrix. The incorporation of Pb and Zn appears to involve the cationic displacement of Ca. Such compartmentation appears to prevent dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a detoxification strategy based on accumulative immobilization. No intracellular localization of Cd was identified in the study, although the Cd concentration in the metalliferous soils examined was not exceptionally high. The observations are discussed in the context of a contribution to enhanced understanding of metal ecotoxicology in earthworms by providing baseline data on a little investigated ecophysiological group of earthworms. Comparisons of metal distribution and mechanisms of metal sequestration are made with other ecophysiological groups of earthworms, and the significance of the findings to biomonitoring and toxicity-testing programmes is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号