首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of the Climate Convention and its Kyoto Protocol is to stabilize greenhouse gas concentrations in the atmosphere at a safe level. This requires both strict limits on emissions from fossil fuels and effective management of biotic carbon stocks. If fossil fuel emissions from 1990 to 2100 are limited to 600 PgC, biotic carbon stocks must increase by 120 PgC to stabilize CO2 concentrations at 450 ppmv. Establishing an appropriate policy regime to accomplish this goal is complicated by a factor of six discrepancy between estimates of the current biotic sink based on national emissions inventories compared with global carbon cycle model calculations. Appropriate policies must also be designed to create incentives for technological innovation in the energy sector and minimize the risk of granting emission credits for biotic carbon sequestration that proves to be temporary.  相似文献   

2.
The Kyoto Protocol was agreed on by more than 150 nations in December, 1997 and (if and when ratified) will establish international commitments to reduce emissions of greenhouse gases to the atmosphere. Under the Kyoto Protocol, some of the carbon emissions and removals within the land-use change and forestry sector can be counted toward a country's commitments for greenhouse gas emissions reductions. In addition to the impacts that land-use practices have on CO2 emissions from fossil-fuel combustion, changes in the carbon stocks of forests (possibly including forest soils) caused by the direct human activities afforestation, reforestation and deforestation and taking place in the `first commitment period' (2008–2012), are to be accounted for under the Kyoto Protocol. Credits for carbon sinks in the biosphere are limited to projects initiated since 1990. A modified version of the model GORCAM has been used to assess eligible emission-reduction credits under the Kyoto regime and to illustrate how the optimal forest-based strategy for carbon dioxide mitigation might change under the provisions of the Kyoto Protocol. The Kyoto Protocol offers rewards for only some of the changes in carbon stocks that might occur and hence the forestry project that produces the most emission reduction credits under the Kyoto Protocol is not necessarily the same project that produces the greatest benefit for net emissions of carbon dioxide to the atmosphere. Supplementing the Protocol with appropriate definitions, interpretations and agreements could help to make sure that it does not provide incentive for activities that run counter to the objectives of the Framework Convention on Climate Change.  相似文献   

3.
基于投入产出法的北京能源消耗温室气体排放清单分析   总被引:2,自引:0,他引:2  
城市是一个巨大能源物资消耗体和温室气体排放体,相关研究受到广泛关注.本文以2007年为例基于投入产出法研究北京市能源消耗的温室气体排放量,计算得出CH4和N2O这两种常规温室气体排放量.结果表明,北京市2007年能源消耗温室气体排放量为3531.72万tCO2当量,其中CO2排放量为3514.40万t,CH4排放量为1734.32t,N2O排放量为435.83t.北京市工业部门仍然是主要的温室气体排放部门,其排放的温室气体占CO2总量的98.96%,CH4总量的88.48%和N2O总量的98.99%.不同最终使用部门中,政府部门消费产生的温室气体排放量超过总量的15%,高于城镇消费和农村消费之和;调出和出口部门的碳排放量超过总量的40%,所占比例最大.贸易中,隐含在调出和出口部门中温室气体排放量是隐含在调入和进口部门的十几倍.北京市不同行业的温室气体排放强度略优于全国水平.降低北京市温室气体排放量可从进一步优化产业结构,发挥科技减排的作用,提高不同产业的能源利用率等方面采取措施.  相似文献   

4.
Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms.  相似文献   

5.
Energy efficiency in the Japanese industry is one of the highest in the world. As a consequence, reduction of CO2 emissions is considered to be difficult and costly. However little attention has been paid as of yet to changes related to so-called non-energy use of fossil fuels. The analysis in this paper suggests that a large number of options exist for emission reduction in the Japanese petrochemical industry. This includes the introduction of biomass feedstocks, the introduction of new catalytic production processes, and changes in waste handling. The use of bioplastics and the use of CO2 feedstocks seem costly options for GHG emission reduction that should not be applied on the short term. Japanese GHG emissions can be reduced by 7.7% if the optimal set of emission mitigation options is applied. About 60 Mt emission reduction (4.9%) can be achieved by changes on the supply side, another 35 Mt emission reduction (2.8%) can be achieved by changes in waste management. While changes in waste management can be implemented before 2010, biomass introduction on the supply side will probably require a longer lead-time. About half of the emission reduction is cost–effective, but will require further technology development. The other half can be achieved at a cost level of 10,000 yen/t CO2 (80 US$/t CO2). The latter part is based on proven technology that is currently not cost–effective.  相似文献   

6.
In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.  相似文献   

7.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

8.
Many proposed activities formitigating global warming in the land-use change and forestry(LUCF) sector differ from measures to avoid fossilfuel emissions because carbon (C) may be held out ofthe atmosphere only temporarily. In addition, thetiming of the effects is usually different. Many LUCFactivities alter C fluxes to and from the atmosphereseveral decades into the future, whereas fossil fuelemissions avoidance has immediate effects. Non-CO2 greenhouse gases (GHGs), which are animportant part of emissions from deforestation inlow-latitude regions, also pose complications forcomparisons between fossil fuel and LUCF, since themechanism generally used to compare these gases(global warming potentials) assumes simultaneousemissions. A common numeraire is needed to expressglobal warming mitigation benefits of different kindsof projects, such as fossil fuel emissions reduction,C sequestration in forest plantations, avoideddeforestation by creating protected areas and throughpolicy changes to slow rates of land-use changes suchas clearing. Megagram (Mg)-year (also known as`ton-year') accounting provides a mechanism forexpressing the benefits of activities such as these ona consistent basis. One can calculate the atmosphericload of each GHG that will be present in each year,expressed as C in the form of CO2 and itsinstantaneous impact equivalent contributed by othergases. The atmospheric load of CO2-equivalent Cpresent over a time horizon is a possible indicator ofthe climatic impact of the emission that placed thisload in the atmosphere. Conversely, this index alsoprovides a measure of the benefit of notproducing the emission. One accounting methodcompares sequestered CO2 in trees with theCO2 that would be in the atmosphere had thesequestration project not been undertaken, whileanother method (used in this paper) compares theatmospheric load of C (or equivalent in non-CO2GHGs) in both project and no-project scenarios.Time preference, expressed by means of a discount rateon C, can be applied to Mg-year equivalencecalculations to allow societal decisions regarding thevalue of time to be integrated into the system forcalculating global warming impacts and benefits. Giving a high value to time, either by raising thediscount rate or by shortening the time horizon,increases the value attributed to temporarysequestration (such as many forest plantationprojects). A high value for time also favorsmitigation measures that have rapid effects (such asslowing deforestation rates) as compared to measuresthat only affect emissions years in the future (suchas creating protected areas in countries with largeareas of remaining forest). Decisions on temporalissues will guide mitigation efforts towards optionsthat may or may not be desirable on the basis ofsocial and environmental effects in spheres other thanglobal warming. How sustainable development criteriaare incorporated into the approval and creditingsystems for activities under the Kyoto Protocol willdetermine the overall environmental and social impactsof pending decisions on temporal issues.  相似文献   

9.
Greenhouse gas (GHG) data submitted in April 2014 on land use, land use change and forestry (LULUCF), energy, industrial processes, solvents and other product use, agriculture, and waste for 37 developed countries was analyzed to estimate the relative contributions of different sectors to GHG emission reductions. This GHG data from the first commitment period of the Kyoto Protocol included 35 parties to Annex B of the Kyoto Protocol, the United States and Canada. Results show that the contribution of each sector was, in order: energy (36.9%), industrial processes (12.4%), agriculture (9.9%), LULUCF (7.7%), waste (3.4%), and solvents and other product use (0.1%). The average proportion of base year emissions reduced in each sector by countries in Annex B was, in order: energy (7.4%), agriculture (2.7%), LULUCF (1.9%), industrial processes (1.2%), waste (0.5%), and solvents and other product use (0.1%). Overall, the energy sector contributed the highest GHG emission reductions, while the agriculture and LULUCF sectors also made contributions. Most countries achieved limited absolute GHG reductions from their chosen LULUCF activities, but the relative contribution of GHG emission reductions from LULUCF was significant but small. This suggests that, unless there are substantial changes to accounting rules, future emission reductions will mainly result from mitigation actions targeting fossil fuel consumption, while the agriculture and LULUCF sectors will continue to play auxiliary roles.  相似文献   

10.
While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but longer-term reduction in forest carbon stocks. Export of wood pellets to EU markets does not greatly affect the total life cycle GHG emissions of wood pellets. However, pellet exporting countries risk creating a considerable GHG emissions burden, as they are responsible for AFOLU and bioenergy production emissions but do not receive credit for pellets displacing fossil fuel-related GHG emissions. Countries producing bioenergy from forest biomass, whether for domestic use or for export, should carefully consider potential implications of alternate forest carbon accounting methods to ensure that potential bioenergy pathways can contribute to GHG emissions reduction targets.  相似文献   

11.
National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO2) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of “indirect” CO2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO2.  相似文献   

12.
Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.  相似文献   

13.

Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO2), gridded EI Open-source Data Inventory for Anthropogenic CO2 (ODIAC) with the multi-resolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urban-rural transitioning areas (90–100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission monitoring and mitigation activity under the Paris Climate Agreement from the United Nations Framework Convention on Climate Change (UNFCCC) 21st Conference of the Parties (COP21). We highlight the importance of capacity building for EI development and coordinated research efforts of EI, atmospheric observations, and modeling to overcome the challenges.

  相似文献   

14.
The Kyoto Protocol has been drafted to bring about an overall reduction in net emissions of greenhouse gases to the atmosphere. Australia has agreed to limit its increase of net greenhouse gas emissions to 8% between 1990 and 2010. While this target is not as tight as that of other parties to the Protocol, it nonetheless constitutes a significant reduction of net emissions below business-as-usual projections, and it will require significant policy initiatives to achieve this reduction. The Kyoto Protocol allows some carbon sequestration by vegetation sinks to be offset against CO2 emissions from the burning of fossil fuels. This paper aims to estimate the contribution that forestation projects could make towards meeting Australia’s commitments under the Kyoto Protocol. It concludes that new plantations could sequester between 0.6 and 7 MtC yr−1 over the commitment period (2008–2012) and offset between about 0.5 and 6% of Australia’s 1990 greenhouse gas emissions. The different estimates depend on the area of eligible plantations that will be established from 1999 onwards and whether plantations will be allowed to grow through to the end of the commitment period or will be in short-rotation stands that may be harvested before 2012. The maximum emission offset can only be achieved if new plantations are established at a rate of 100,000 ha yr−1, which is equivalent to the Australian Government’s target under the 2020 vision. It is likely that sufficient suitable land would be available in Australia to achieve the required establishment rates. However, while such a contribution by vegetation sinks would be helpful, it would not, on its own, be sufficient for Australia to meet its required greenhouse gas emission target.  相似文献   

15.
Carbon dioxide (CO2) capture and storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological CO2 storage in climate policy. The storage capacity of Norway's Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If CO2 is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic challenges, including the large investment in infrastructure required, with related economies of scale properties. Thus CO2 capture, transportation and storage projects are likely to be more economically attractive if developed on a large scale, which could mean involving two or more nations. An additional challenge is the risk of future leakages from storage sites, where the government must take on a major responsibility. In institutional and policy terms, important challenges are the unsettled status of geological CO2 storage as a policy measure in the Kyoto Protocol, lack of relevant reporting and verification procedures, and lack of decisions on how the option should be linked to the flexibility mechanisms under the Kyoto Protocol. In terms of competitiveness with expected prices for CO2 permits under Kyoto Protocol trading, the relatively high costs per tonne of CO2 stored means that geological CO2 storage is primarily of interest where enhanced oil recovery is possible. These shortcomings and uncertainties mean that companies and governments today only have weak incentives to venture into geological CO2 storage.  相似文献   

16.
Taking the European Union (EU) as a case study, we simulate the application of non-uniform national mitigation targets to achieve a sectoral reduction in agricultural non-carbon dioxide (CO2) greenhouse gas (GHG) emissions. Scenario results show substantial impacts on EU agricultural production, in particular, the livestock sector. Significant increases in imports and decreases in exports result in rather moderate domestic consumption impacts but induce production increases in non-EU countries that are associated with considerable emission leakage effects. The results underline four major challenges for the general integration of agriculture into national and global climate change mitigation policy frameworks and strategies, as they strengthen requests for (1) a targeted but flexible implementation of mitigation obligations at national and global level and (2) the need for a wider consideration of technological mitigation options. The results also indicate that a globally effective reduction in agricultural emissions requires (3) multilateral commitments for agriculture to limit emission leakage and may have to (4) consider options that tackle the reduction in GHG emissions from the consumption side.  相似文献   

17.
A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons C02 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m3, and public water supplies of 0.067 kg CO2 eq./m3. Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement.  相似文献   

18.
China, as the world’s largest emitter, intends to achieve the peaking of carbon dioxide (CO2) emissions around 2030 and to make best efforts to peak early to mitigate global change. Under this strategy, a dynamic, recursive computable general equilibrium (CGE) model is used to analyze the economy, energy, and environment impact of CO2 emission reduction policy based on 17 scenarios in China: carbon tax, emission trading scheme (ETS), and the mixed policy in different price level, in order to find out which kind of emission reduction strategy is more feasible. The results show that CO2 emission in 2030 will be reduced with the implementation of tax, ETS and mixed policy, by 10–13 %, 12–14 %, and 18–28 %, respectively. From 2016 to 2030, China can reduce 18,338–24,156 Mt CO2 through the implementation of mixed policy. Furthermore, relative to single policy, mixed policy has stronger effects on primary energy consumption cut, by 738–1124 Mtoe or 18–28 %, which will make CO2 emissions reach a peak before 2030 and the peak emission is not greater than 12 billion tons which is in line with the reduction demand in China. Thus, the mixed policy is the most effective strategy so that mixed policy is recommended to parties included in Annex I in United Nations Framework Convention on Climate Change Kyoto Protocol and other countries with large potential of emission reduction, while ETS is suggested to countries with low carbon emissions per capita which can balance economic development and CO2 mitigation.  相似文献   

19.
The UN Framework Convention on Climate Change and the Kyoto protocol made under the Convention, aim at controlling the greenhouse gas emissions and their concentrations in the atmosphere. The contributions of fossil fuel use in industrial and developing countries to the atmospheric CO2 concentration are calculated using estimates for emission developments and a simple carbon cycle model. The contribution of the industrial countries to the CO2 concentration increase, above the preindustrial level, is estimated to be about 50 ppm in 1990 if only the emissions from fossil fuels are considered. The contribution from developing countries is about 15 ppm. The contribution from industrial countries would increase by about 20 ppm between 1990 and 2010 if no emission reductions were assumed and by about 15 ppm in the considered rather strict reduction scenario. According to the Kyoto protocol the emissions from industrial countries should be reduced by 5.2% from the 1990 level in about 20 years. This development of the emissions would cause a concentration increase of 18 ppm. The concentration increase due to developing countries between 1990 and 2010 would be about 15 ppm. In order that the present global increase rate of CO2 concentration 1.5 ppm/a would not be exceeded, steeper reductions than those made in Kyoto should be agreed. Increasing global emissions and slow removal of CO2 from the atmosphere makes it difficult to reach the ultimate objective of the Climate Convention, the stabilisation of the atmospheric concentration.  相似文献   

20.
Full accounting of the greenhouse gas budget in the forestry of China   总被引:1,自引:0,他引:1  
Forest management to increase carbon (C) sinks and reduce C emissions and forest resource utilization to store C and substitute for fossil fuel have been identified as attractive mitigation strategies. However, the greenhouse gas (GHG) budget of carbon pools and sinks in China are not fully understood, and the forestry net C sink must be determined. The objective of this study was to analyze potential forest management mitigation strategies by evaluating the GHG emissions from forest management and resource utilization and clarify the forestry net C sink, and its driving factors in China via constructing C accounting and net mitigation of forestry methodology. The results indicated that the GHG emissions under forest management and resource utilization were 17.7 Tg Ce/year and offset 8.5% of biomass and products C sink and GHG mitigation from substitution effects from 2000 to 2014, resulting in a net C sink of 189.8 Tg Ce/year. Forest resource utilization contributed the most to the national forestry GHG emissions, whereas the main driving factor underlying regional GHG emissions varied. Afforestation dominated the GHG emissions in the southwest and northwest, whereas resource utilization contributed the most to GHG emissions in the north, northeast, east, and south. Furthermore, decreased wood production, improved product use efficiency, and forests developed for bioenergy represented important mitigation strategies and should be targeted implementation in different regions. Our study provided a forestry C accounting in China and indicated that simulations of these activities could provide novel insights for mitigation strategies and have implications for forest management in other countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号