首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Integration of CO2 capture and storage (CCS) into coal-fired power stations is seen as a way of significantly reducing the carbon emissions from stationary sources. A large proportion of the estimated cost of CCS is because of the additional energy expended to capture the CO2 and compress it for transport and storage, reducing the energy efficiency of the power plant. This study uses pinch analysis and heat integration to reduce the overall energy penalty and, therefore, the cost of implementing CCS for power plants where the additional heat and power for the CCS plant will be provided by the existing power plant. A combined pinch analysis and linear programming optimisation are applied to determine targets for the energy penalty of existing power plants. Two existing pulverised brown coal power plants with new CCS plants using solvent absorption are used as the basis for the study that show the energy penalty can be reduced by up to 50% by including effective heat integration. The energy penalty can be further reduced by pre-drying the coal.  相似文献   

2.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

3.
The study presents the results of an integrated assessment of carbon capture and storage (CCS) in the power plant sector in Germany, with special emphasis on the competition with renewable energy technologies. Assessment dimensions comprise technical, economic and environmental aspects, long-term scenario analysis, the role of stakeholders and public acceptance and regulatory issues. The results lead to the overall conclusion that there might not necessarily be a need to focus additionally on CCS in the power plant sector. Even in case of ambitious climate protection targets, current energy policy priorities (expansion of renewable energies and combined heat and power plants as well as enhanced energy productivity) result in a limited demand for CCS. In case that the large energy saving potential aimed for can only partly be implemented, the rising gap in CO2 reduction could only be closed by setting up a CCS-maximum strategy. In this case, up to 22% (41 GW) of the totally installed load in 2050 could be based on CCS. Assuming a more realistic scenario variant applying CCS to only 20 GW or lower would not be sufficient to reach the envisaged climate targets in the electricity sector. Furthermore, the growing public opposition against CO2 storage projects appears as a key barrier, supplemented by major uncertainties concerning the estimation of storage potentials, the long-term cost development as well as the environmental burdens which abound when applying a life-cycle approach. However, recently, alternative applications are being increasingly considered?Cthat is the capture of CO2 at industrial point sources and biomass based energy production (electricity, heat and fuels) where assessment studies for exploring the potentials, limits and requirements for commercial use are missing so far. Globally, CCS at power plants might be an important climate protection technology: coal-consuming countries such as China and India are increasingly moving centre stage into the debate. Here, similar investigations on the development and the integration of both, CCS and renewable energies, into the individual energy system structures of such countries would be reasonable.  相似文献   

4.
Stabilization of CO2 atmospheric concentrations requires practical strategies to address the challenges posed by the continued use of coal for baseload-electricity production. Over the next two decades, CO2 capture and sequestration (CCS) demonstration projects would need to increase several orders of magnitude across the globe in both size and scale. This task has several potential barriers which will have to be accounted for. These barriers include those that have been known for a number of years including safety of subsurface sequestration, pore-space competition with emerging activities like shale gas production, legal and regulatory frameworks, and public acceptance and technical communication. In addition water management is a new challenge that should be actively and carefully considered across all CCS operations. A review of the new insights gained on these previously and newly identified challenges, since the IPCC special report on CCS, is presented in this paper. While somewhat daunting in scope, some of these challenges can be addressed more easily by recognizing the potential advantageous synergies that can be exploited when these challenges are dealt with in combination. For example, active management of water resources, including brine in deep subsurface formations, can provide the additional cooling-water required by the CO2 capture retrofitting process while simultaneously reducing sequestration leakage risk and furthering efforts toward public acceptance. This comprehensive assessment indicates that water, sequestration, legal, and public acceptance challenges ought to be researched individually, but must also be examined collectively to exploit the promising synergies identified herein. Exploitation of these synergies provides the best possibilities for successful large-scale implementation of CCS.  相似文献   

5.

Biomass-based combined heat and power (CHP) generation with different carbon capture approaches is investigated in this study. Only direct carbon dioxide (CO2) emissions are considered. The selected processes are (i) a circulating fluidized bed boiler for wood chips connected to an extraction/condensation steam cycle CHP plant without carbon capture; (ii) plant (i), but with post-combustion CO2 capture; (iii) chemical looping combustion (CLC) of solid biomass connected to the steam cycle CHP plant; (iv) rotary kiln slow pyrolysis of biomass for biochar soil storage and direct combustion of volatiles supplying the steam cycle CHP plant with the CO2 from volatiles combustion escaping to the atmosphere; (v) case (iv) with additional post-combustion CO2 capture; and (vi) case (iv) with CLC of volatiles. Reasonable assumptions based on literature data are taken for the performance effects of the CO2 capture systems and the six process options are compared. CO2 compression to pipeline pressure is considered. The results show that both bioenergy with carbon capture and storage (BECCS) and biochar qualify as negative emission technologies (NETs) and that there is an energy-based performance advantage of BECCS over biochar because of the unreleased fuel energy in the biochar case. Additional aspects of biomass fuels (ash content and ash melting behavior) and sustainable soil management (nutrient cycles) for biomass production should be quantitatively considered in more detailed future assessments, as there may be certain biomass fuels, and environmental and economic settings where biochar application to soils is indicated rather than the full conversion of the biomass to energy and CO2.

  相似文献   

6.
Coal-based olefin (CTO) industry as a complement of traditional petrochemical industry plays vital role in China's national economic development. However, high CO2 emission in CTO industry is one of the fatal problems to hinder its development. In this work, the carbon emission and mitigation potentials by different reduction pathways are evaluated. The economic cost is analyzed and compared as well. According to the industry development plan, the carbon emissions from China's CTO industry will attain 189.43 million ton CO2 (MtCO2) and 314.11 MtCO2 in 2020 and 2030, respectively. With the advanced technology level, the maximal carbon mitigation potential could be attained to 15.3% and 21.9% in 2020 and 2030. If the other optional mitigation ways are combined together, the carbon emission could further reduce to some extent. In general, the order of mitigation potential is followed as: feedstock alteration by natural gas > CO2 hydrogenation with renewable electricity applied > CCS technology. The mitigation cost analysis indicates that on the basis of 2015 situation, the economic penalty for feedstock alteration is the lowest, ranged between 186 and 451 CNY/tCO2, and the cost from CCS technology is ranged between 404 and 562 CNY/tCO2, which is acceptable if the CO2 enhanced oil recovery and carbon tax are considered. However, for the CO2 hydrogenation technology, the cost is extremely high and there is almost no application possibility at present.  相似文献   

7.
Technological and regulatory responses to large-scale environmental threats, such as depletion of the natural resources and climate change, tend to focus on one issue at time. Emerging carbon capture and storage (CCS) technologies that are in different stages of development offer a case that demonstrates this dilemma. This article approximates the implications of two emerging CCS applications on existing steel mill’s CO2 emissions and its use of material resources. The evaluated applications are based on the mineralization method and the comparative case represents two versions of a geological CCS method. The results of the evaluation indicate that if technical bottleneck issues related to CO2 sequestration with mineralization can be solved, it can be possible to achieve a similar CO2 reduction performance with mineralization-based CCS applications as with more conventional CCS applications. If the CO2 capturing potential of mineralization-based applications could be taken into use, it could also enable the significant improvement of material efficiency of industrial operations. Urgent problem hampering the development of mineralization-based CCS applications is that the policy regimes related to CCS especially in the European Union (EU) do not recognize mineralization as a CCS method. Article suggests that the focus in the future evaluations and in policy should not be directed only on CO2 sequestration capacity of CCS applications. Similarly important is to consider their implications on material efficiency. Article also outlines modifications to the EU’s CCS policy in terms of the formal terminology.  相似文献   

8.
The power sector in Thailand is the largest contributor to CO2 emissions. There is high potential to mitigate CO2 emission via alternative power generating plants. Alternative plants considered in this study include nuclear plants, integrated gasification combined cycle plants, biomass-based plants and supercritical thermal power plants. The biomass-based plants considered here are fueled with four types of biomass; paddy husk, municipal solid waste (MSW), fuel wood and corncob. The methodology for the optimal expansion plan of the power generating system over the planning horizon is based on the least-cost approach. The results from the least-cost planning analyses show that the nuclear alternative has the highest potential to mitigate not only CO2 but also other airborne emissions. Moreover, the nuclear option is the most effective abatement strategy for CO2 reduction due to its negative incremental cost of CO2 reduction.  相似文献   

9.
In this work, the waste biomass lotus leaf was converted into N-doped porous carbonaceous CO2 adsorbents. The synthesis process includes carbonization of lotus leaf, melamine post-treatment and KOH activation. For the resultant sorbents, high nitrogen content can be contained due to the melamine modification and advanced porous structure were formed by KOH etching. These samples were carefully characterized by different techniques and their CO2 adsorption properties were investigated in detail. These sorbents hold good CO2 adsorption abilities, up to 3.87 and 5.89 mmol/g at 25 and 0°C under 1 bar, respectively. By thorough investigation, the combined interplay of N content and narrow microporous volume was found to be responsible for the CO2 uptake for this series of sorbents. Together with the high CO2 adsorption abilities, these carbons also display excellent reversibility, high CO2/N2 selectivity, applicable heat of adsorption, fast CO2 adsorption kinetics and good dynamic CO2 adsorption capacity. This study reveals a universal method of obtaining N-doped porous carbonaceous sorbents from leaves. The low cost of raw materials accompanied by easy synthesis procedure disclose the enormous potential of leaves-based carbons in CO2 capture as well as many other applications.  相似文献   

10.
The cement industry is one of the largest carbon dioxide (CO2) emitters in the Thai industry. The cement sector accounted for about 20,633 kilotonnes (ktonnes) CO2 emissions in 2005 in Thailand. A bottom-up CO2 abatement cost curve (ACC) is constructed in this study for the Thai cement industry to determine the potentials and costs of CO2 abatement, taking into account the costs and CO2 abatement of different technologies. The period of 2010–2025 is chosen as the scenario period. We analyzed 41 CO2 abatement technologies and measures for the cement industry. Using the bottom-up CO2 ACC model, the cost-effective annual CO2 abatement potential for the Thai cement industry during the 15 year scenario period (2010–2025) is equal to 3095 ktonnes CO2/year. This is about 15% of the Thai cement industry’s total CO2 emissions in 2005. The total technical annual CO2 abatement potential is 3143 ktonnes CO2/year, which is about 15.2% of the Thai cement industry’s total CO2 emissions in 2005. We also conducted a sensitivity analysis for the discount rate parameter.  相似文献   

11.
Carbon dioxide (CO2) is one of the primary greenhouse gases that contribute to climate change. Consequently, emission reduction technologies will be needed to reduce CO2 atmospheric concentration. Microalgae may have an important role in this context. They are photosynthetic microorganisms that are able to fix atmospheric CO2 using solar energy with efficiency ten times higher than terrestrial plants. The objectives of this study were: (i) to analyse the effect of light supply on the growth of Chlorella vulgaris and Pseudokirchneriella subcapitata; (ii) to assess the atmospheric CO2 capture by these microalgae; and (iii) to determine the parameters of the Monod model that describe the influence of irradiance on the growth of the selected microalgae. Both microalgae presented higher growth rates with high irradiance values and discontinuous light supply. The continuous supply of light at the highest irradiance value was not beneficial for C. vulgaris due to photooxidation. Additionally, C. vulgaris achieved the highest CO2 fixation rate with the value of 0.305 g-CO2 L?1 d?1. The parameters of the Monod model demonstrated that C. vulgaris can achieve higher specific growth rates (and higher CO2 fixation rates) if cultivated under higher irradiances than the studied values. The presented results showed that microalgal culture is a promising strategy for CO2 capture from atmosphere.  相似文献   

12.
This study is to evaluate the impact of cleaner vehicles on energy systems and CO2 emissions in the transportation sector in Japan. The transportation sector has the characteristic of spending petroleum. Even when the cost of petroleum rises, conventional vehicles cannot switch fuels to alternative energy right away. Cleaner vehicles, such as fuel cell vehicles, would be one of the alternative technologies in the transportation sector. It is supposed to have excellent performance in fuel efficiency and has strong possibility to reduce CO2 drastically. This paper uses a multi-period market equilibrium model to explore the impacts of cleaner vehicles on the passenger transportation sector in Japanese energy system out to the year 2040. A Btu tax is tentatively imposed to evaluate the effect of fuel cost on energy consumption in the transportation sector. Financial parameters such as capital cost and operating cost are considered to summarize the profit in taxation case. The result of this study shows that fuel cell vehicles have a great effect on reducing CO2 emissions especially when Btu taxes are imposed, which in turn has the advantage of encouraging a more diverse set of technologies and fuels. The analysis that petroleum consumption can be reduced using fuel cell vehicles will have effects on perspectives on energy systems in Japan.  相似文献   

13.
China encourages the demonstration of carbon capture and storage (CCS) projects. In an effort to identify gaps and provide suggestions for environmental risk management of carbon dioxide (CO2) geological storage in China, this article presents a concise overview of potential health, safety and environmental (HSE) risks and environmental management regulations for CO2 geological storage in Australia, Japan, the United States (USA), the European Union (EU), and the United Kingdom (UK). The environmental impact assessment (EIA) experience of Shenhua Ordos Coal-to-Liquid (CTL) Project and PetroChina Jilin Oil Field enhanced oil recovery (EOR) is subsequently analyzed in light of our field investigation, and gaps in current EIA guidelines that are applicable to CO2 geological storage projects are identified. It is found that there are no specific environmental risk regulations suitable for CO2 storage in China, and environmental risk management lags behind the development of CCS technology, which presents a challenge to demonstration enterprises in terms of assessing environmental risk. One major challenge is the overestimation or underestimation of this risk on the part of the enterprise, and another is a lack of applicable regulations for government sectors to supervise the risk throughout CCS projects. Therefore, there is a pressing need for China to formulate environmental management regulations that include environmental risk assessment, mandatory monitoring schemes, environmental emergency plans, and related issues.  相似文献   

14.
碳捕集与封存(CCS)技术是当前抑制大气中CO2过快增长的有效方法,但在CCS项目实施过程中仍存在CO2泄漏而影响地表环境及生态的风险.本研究以龙粳31号和龙稻18号为实验对象,模拟研究地质封存CO2以不同速率泄漏对稻田水环境基础水质指标DCO2、pH、DO和ORP的影响,探讨稻田水对地质封存CO2泄漏的响应规律.结果表明:CO2泄漏对稻田水的DCO2、pH、DO和ORP长期影响显著,不同CO2泄漏速率对稻田水质指标的影响差异显著.在各指标平衡后,稻田水各水质指标均呈现明显的日变化规律,其中DCO2呈早晚高、午间低的先减后增规律,而pH、DO和ORP均呈早晚低、午间高的先增后减规律.根据各指标差异性分析,建议将稻田水DCO2作为稻田系统CO2泄漏监测的主要指标,将pH、DO、ORP作为CO2泄漏监测的辅助指标.  相似文献   

15.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25–38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

16.
Possibilities to reduce CO2 emissions and related costs at Swedish petroleum refineries have been estimated. An evaluation of the direct impact on costs for emission-reducing measures due to the inclusion in the EU ETS is also made. Abatement measures possible to implement within the next 5–6 years at Shell refinery Gothenburg corresponding to a 8% reduction, and at Preemraff Lysekil corresponding to 22% of the estimated fossil CO2 emissions in 2010 have been included. Many of the estimated abatement costs are negative, meaning cost savings for the companies if implemented. The cost estimates are strongly linked to the fuel prices. The inclusion of industries in the EU ETS increases the incentives for companies to implement CO2 abatement measures.  相似文献   

17.
Carbon dioxide (CO2) capture and storage is increasingly being considered as an important climate change mitigation option. This paper explores provisions for including geological CO2 storage in climate policy. The storage capacity of Norway's Continental Shelf is alone sufficient to store a large share of European CO2 emissions for many decades. If CO2 is injected into oil reservoirs there is an additional benefit in terms of enhanced oil recovery. However, there are significant technical and economic challenges, including the large investment in infrastructure required, with related economies of scale properties. Thus CO2 capture, transportation and storage projects are likely to be more economically attractive if developed on a large scale, which could mean involving two or more nations. An additional challenge is the risk of future leakages from storage sites, where the government must take on a major responsibility. In institutional and policy terms, important challenges are the unsettled status of geological CO2 storage as a policy measure in the Kyoto Protocol, lack of relevant reporting and verification procedures, and lack of decisions on how the option should be linked to the flexibility mechanisms under the Kyoto Protocol. In terms of competitiveness with expected prices for CO2 permits under Kyoto Protocol trading, the relatively high costs per tonne of CO2 stored means that geological CO2 storage is primarily of interest where enhanced oil recovery is possible. These shortcomings and uncertainties mean that companies and governments today only have weak incentives to venture into geological CO2 storage.  相似文献   

18.
CO2 utilizations are essential to curbing the greenhouse gas effect and managing the environmental pollutant in an energy-efficient and economically-sound manner.This paper seeks to critically analyze these technologies in the context of each other and highlight the most important utilization avenues available thus far.This review will introduce and analyze each major pathway,and discuss the overall applicability,potential extent,and major limitations of each of these pathways to util...  相似文献   

19.
本研究以3种钢铁厂碱渣直接法固碳技术为研究对象,该技术将钢渣进行碳酸化处理,可快速永久地将CO2固化储存在钢渣中,气固相反应可分别在高压釜、泥浆反应器和超重力旋转床的水溶液中一步完成,并将其分别定义为T1、T2、T3.通过Umberto软件建立生命周期模型,对3种技术的资源环境影响进行评估.结果表明,T1的环境影响最高,其次为T3,T2的环境影响最小.技术评价显示,T3在技术效率、资源消耗、环境影响方面具有较好的综合效益.敏感性分析表明,加热效率的敏感性系数分别为0.97、0.97和0.46.转换率与温室气体排放的关系分别呈上升、倒U型和下降的变化趋势.提高加热效率、合理利用热源及选择合适的技术效率,将有利于技术优化,减少技术的环境影响,提高固碳效率.  相似文献   

20.
The replacement of fossil fuels by biofuels could be an important means of reducing net carbon dioxide (CO2) emission. An estimation of the CO2 mitigation efficiency of biofuel systems depends on the method and assumptions used. Here, different parameters and methods are discussed for comparing fossil-fuel- and biofuel-based systems. Three parameters are suggested: the monetary cost, the primary energy cost and the biofuel cost of CO2 mitigation. They are defined as the difference in monetary expenditure, primary energy use and biofuel use between the compared systems, divided by the difference in net CO2 emission between the systems. Cogeneration and separate production of electricity and heat is then compared using these parameters and the methods of multi-functional products or subtraction. In both methods, either electricity or heat is regarded as the main product and the other is regarded as a by-product. The multi-functional method is preferable due to its transparency as both the main product and the by-product are part of the functional unit. Using heat as the main product illustrates the typical situation that the heat demand limits the use of cogeneration. When comparing systems the output from them should not differ. If the by-product is not fully, cogenerated part of the by-product has to be produced separately. A logical choice for producing this part of the by-product is to use a similar fuel and technology as used for cogeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号