共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
城市污泥制备水中重金属吸附剂及其吸附特性研究 总被引:1,自引:0,他引:1
本实验利用城市污水厂的脱水污泥,通过化学活化法制备活性炭.研究活化温度、活化时间、固液比和活化剂浓度等因素对制备污泥活性炭的影响,确定氯化锌法制备污泥活性炭的最佳工艺为活化温度550 ℃、活化时间30 min、固液比1∶2、氯化剂浓度45%.将制备的污泥活性炭吸附Cu2+,Cr6+,Cd2+3种重金属离子模拟废水,研究pH值、吸附时间、污泥投加量、温度等因素对吸附过程的影响.实验结果表明,剩余污泥对Cu2+,Cr6+,Cd2+3种重金属离子都具有良好的吸附效果,在优化条件下,3种重金属离子去除率分别达到94%,76%,81%,吸附能力大小顺序为Cu2+>Cd2+>+Cr6+. 相似文献
3.
4.
采用水热法制备碳改性陶粒和铁/碳改性陶粒,对改性陶粒表面进行了表征,研究了改性陶粒对废水中磷的吸附效果。表征结果显示,改性后陶粒形貌更规则,比表面积增加,有机官能团种类增多。吸附实验结果表明,碳改性陶粒和铁/碳改性陶粒在初始磷质量浓度为5 mg/L、pH分别为6和5、陶粒投加量为0.03 mg/L的条件下,于35℃下吸附8 h,磷的去除率分别达到97.28%和93.10%,剩余磷质量浓度分别为0.136 mg/L和0.345 mg/L;Langmuir等温吸附模型和准二级动力学方程更适合描述两种改性陶粒对磷的吸附过程,且改性后陶粒均具有良好的解吸能力,解吸率随解吸剂浓度的增加而增大。 相似文献
5.
碱渣对Cd2+的吸附特性研究 总被引:1,自引:1,他引:1
研究了碱渣对溶液中Cd2+的吸附特征。实验结果表明,碱渣对Cd2+的吸附量随温度升高而降低,随Cd2+初始质量浓度增加而增大,随体系pH升高而增大。当体系pH〈7.52时,表面吸附起主导作用,吸附作用力主要为偶极间力和氢键力,碱渣对Cd2+的吸附热力学可用Freundlich等温吸附方程较好地描述;而当吸附体系pH〉8.00时,吸附作用力主要为化学键力,吸附过程可用Langmuir等温吸附方程较好地描述。当体系pH=7.00时,碱渣对Cd2+的吸附动力学用二级动力学方程拟合效果最佳;当体系pH为8.00和9.01时,用Langmuir动力学方程拟合的效果最佳。 相似文献
6.
挥发性有机物的物化性质与活性炭饱和吸附量的相关性研究 总被引:3,自引:0,他引:3
采用kc-4.0型颗粒活性炭对甲苯、对二甲苯、乙酸甲酯、乙酸乙酯、乙醇、正丙醇进行吸附实验,研究挥发性有机物的物化性质与活性炭饱和吸附量之间的相关性。实验结果表明,活性炭对乙酸甲酯、乙醇和正丙醇的吸附性能较差,对乙酸乙酯、甲苯和对二甲苯的的吸附性能较好,饱和吸附量最大的是甲苯(达312.92mg/g),饱和吸附量最小的是乙酸甲酯(为224.93mg/g)。6种挥发性有机物的吸附等温线用Langmuir方程进行拟合,效果良好。挥发性有机物的比蒸发速度、饱和蒸气压和电离势能与活性炭饱和吸附量具有显著的相关性。比蒸发速度越快、饱和蒸气压越高或电离势能越大,活性炭饱和吸附量越小。 相似文献
7.
以掺烧污泥型粉煤灰(电力燃煤和市政污泥混合共燃产生)和纯煤粉型粉煤灰为对象,研究了其物理化学性质,分析了其重金属含量和浸出毒性,并进一步考察了其重金属吸附性能。结果表明:与纯煤粉型粉煤灰相比,掺烧污泥型粉煤灰的微观形貌更接近于规则球形颗粒;二者矿物组成差异明显,掺烧污泥型粉煤灰由多种矿物质均衡组成;两种粉煤灰浸出液中各重金属浓度远低于GB 8978—1996的排放浓度限值,可再利用为水中重金属吸附剂;掺烧污泥型粉煤灰对铜、铅、镉、镍、铬的饱和吸附量分别为107.53,119.99,73.39,53.14,42.19 mg/g,均远高于纯煤粉型粉煤灰,这归因于其矿物相反应活性高、化学吸附能力强。 相似文献
8.
9.
在固定床反应器上研究污泥炭吸附剂对气态汞(Hg0(g))的吸附特性,并对其吸附机理进行探讨。实验结果表明:污泥炭吸附剂对Hg0(g)的吸附容量随着吸附温度的升高、气体流量的增大而降低,随着Hg0(g)质量浓度的增加而增大;在吸附温度为130℃、Hg0(g)质量浓度为65.2μg/m3、气体流量为1 L/min时,污泥炭吸附剂对Hg0(g)的吸附容量达到81.8μg/g,优于选定的商品活性炭。污泥炭吸附剂对Hg0(g)的吸附机理主要包括物理吸附、化学吸附、化学反应以及三者相结合的共同作用。 相似文献
10.
11.
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. 相似文献
12.
循环流化床锅炉灰渣物化性能分析 总被引:3,自引:1,他引:3
以石家庄热电厂改造工程拟选用的燃煤及石灰石粉试烧所产生的灰渣实验数据为基础,从灰渣的常量化学成分、颗粒组成、干密度、含水量、透水性、抗剪性等方面,对循环流化床锅炉灰渣的物化性能进行了初步分析。 相似文献
13.
14.
15.
Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste 总被引:4,自引:0,他引:4
The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production. 相似文献
16.
17.
Sangchul Nam Wan Namkoong Jeong-Hee Kang Jin-Kyu Park Namhoon Lee 《Waste management (New York, N.Y.)》2013,33(10):2091-2098
Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. 相似文献
18.
Teppei Komiyama Arata Kobayashi Manabu Yahagi 《Journal of Material Cycles and Waste Management》2013,15(1):106-110
Animal manure is waste that contains large amounts of fertilizer resources. Incineration technology is effective in decreasing the volume of animal manure and concentrating the nutrients. In this study, the nutrient concentration and chemical compounds of several types of animal manure ash were examined to promote their recycling for agriculture. The nutrient concentration of manure ash was dependent on the reduction rate of solid materials by incineration. The phosphorus (P) and potassium (K) of cattle and layer manure were not concentrated greatly because of high silicon (Si) and calcium (Ca) concentrations, respectively. On the other hand, the P concentration of swine manure and broiler litter was increased to 10.1–12.0 % (3.6–4.6 times compared with original materials), equivalent to that of phosphate rock used as fertilizer material. The K concentration of broiler litter ash (16.1 %) was highest of all. The phosphate compounds of cattle and swine manure ashes were determined as Ca9Fe(PO4)7 or Ca9MgK(PO4)7. Hydroxyapatite (Ca5(PO4)3(OH)) was detected in layer manure and broiler litter ashes. By acid treatment of ash, P and K availability of the fertilizer made from layer manure ash (33 % of materials) was equivalent to that of conventional chemical fertilizer. 相似文献
19.
Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties 总被引:1,自引:0,他引:1
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water. 相似文献