首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
汪晶  张惠灵  张静  麻园 《化工环保》2011,(2):172-175
以不锈钢基PbO2电极为阳极、同等材质的不锈钢板为阴极,在两电极之间以高炉炼钢废渣为填充粒子,自制改进三维电极反应器.通过自制的三维电极反应器,采用电催化氧化法降解活性艳蓝染料.实验结果表明,在废渣加入量为20 g/L、电极间距为10 mm、槽电压为8V的条件下,处理500 mL质量浓度为30 mg/L的活性艳蓝溶液,...  相似文献   

2.
电化学工艺处理有机废水的研究进展   总被引:1,自引:0,他引:1  
聂春红  王宝辉 《化工环保》2011,31(4):327-331
综述了目前国内外学者在二维电极和三维电极的开发和改进方面的研究成果,指出了电化学氧化技术和电极材料的主要研究方向和发展趋势.提出为解决电化学水处理技术中提高电催化效率和延长电极寿命的问题,当前研究的主要方向应集中在阳极材料、反应器结构和处理工艺方面.  相似文献   

3.
利用电解法在离子隔膜电解槽反应器的阴阳极室以较高的电流效率分别合成了过氧化氢和次氯酸钠。对原位合成的次氯酸钠等含氯氧化剂的氨氮去除效果进行了考察,在初始ρ(NH_4~+-N)为1 000 mg/L和电极间距为5 mm的条件下,阴极合成过氧化氢的电流效率和TN去除率均高达100%。  相似文献   

4.
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

5.
铱涂层钛电极电催化氧化降解喹啉   总被引:2,自引:1,他引:1  
采用电催化氧化降解模拟焦化废水中的喹啉,研究了电极种类、废水初始质量浓度、废水pH、极板间距和电流密度对喹啉去除率的影响.实验结果表明,在以铱涂层钛电极为阳极、废水中喹啉初始质量浓度为100 mg/L、废水pH为9、电流密度为20 mA/cm2、极板间距为1 cm、反应时间为720 min时,喹啉去除率达88.1%.并...  相似文献   

6.
电解法处理采油废水的研究   总被引:1,自引:0,他引:1  
以提高电解处理工艺的效率、降低处理成本、易于实现工业化为目标,筛选出适合处理采油废水的高效电极材料,考察了电解法处理采油废水的各种影响因素,确定实验室电解氧化法处理采油废水的适宜条件.研究结果表明:以析氯阳极 铁阴极作为试验电极材料,在电流密度为15 mA/cm2,电解时间为80min,水板比约0.10 cm2/cm3,弱碱性,极板间距为10mm的条件下对采油废水进行电解处理,COD去除率可达到73.0%,NH3-N去除率可达到98.5%.  相似文献   

7.
纳米TiO2光电催化氧化法测定COD的影响因素   总被引:1,自引:1,他引:0  
以纳米TiO2为光阳极,利用薄层微型反应器纳米TiO2光电催化氧化的方法测定COD,具有快速、准确、无二次污染的特点。研究了电解质类型、光源种类等对薄层微型反应器中光电催化测定COD的影响。研究结果表明:与NaNO,和KCl比较,NaH2PO4作电解质时的紫外光吸收低、电极表面氧化性能稳定,性能良好;与镓灯、碘镓灯比较,中压汞灯的紫外光谱丰富、辐射照度大,有利于TiO2光电催化反应的进行;通过热重分析,确定电极薄膜的烧结温度为520℃。  相似文献   

8.
钛基锡锑电极电催化氧化处理硝基苯废水   总被引:1,自引:0,他引:1  
采用钛基锡锑(Sn-Sb/Ti)电极作为氧化阳极,不锈钢为阴极,电催化氧化降解废水中硝基苯。实验结果表明,处理硝基苯废水的最佳条件为:电流密度25 mA/cm~2;Na_2SO_4作为电解质,加入量15g/L;极板间距2 cm;溶液初始pH 6。在此最佳条件下,硝基苯去除率大于95%,TOC去除率大于80%,表明Sn-Sb/Ti阳极能有效去除废水中有机污染物。  相似文献   

9.
采用新型板-孔-板式电极反应器处理甲基橙废水,研究了反应器参数对甲基橙废水脱色效果的影响.实验结果表明:采用废水从反应器底部流人、流经绝缘板的孔后从反应器上部流出的进液方式,最佳绝缘板孔径为1.0 mm;在初始废水电导率为500 μS/cm、初始甲基橙质量浓度为10 mg/L的条件下,放电处理30 min时,废水脱色率可达98%;废水pH由6.5降至4.9; COD去除率接近50%.  相似文献   

10.
采用填充床电化学反应器,以Na2SO4为支持电解质,分别以IrO2-Ta2O5/Ti和PbO2/Ti为阳极,以Ti板为阴极催化氧化降解苯酚。考察了电流密度和进水流量对废水COD去除率、平均电流效率(ACE)和电耗(Esp)的影响。实验结果表明:PbO2/Ti阳极电催化氧化苯酚的效率高于IrO2-Ta2O5/Ti阳极,且PbO2/Ti阳极有更高的ACE和更低的Esp;在以PbO2/Ti为阳极、电流密度为100 A/m2、进水流量为0.8 L/h的条件下,COD去除率最高为90.59%,ACE较高,Esp较低。  相似文献   

11.
The burning rate of a slick of oil on a water bed is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil-spill. The total heat release, as a function of the pool diameter, is obtained from an existing correlation. It is assumed that radiative heat is absorbed close to the fuel surface, that conduction is the dominant mode of heat transfer in the liquid phase and that the fuel boiling temperature remains constant. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). The effect of weathering on the burning rate decreases with the weathering period and that emulsification results in a linear decrease of the burning rate with water content.  相似文献   

12.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

13.
Six film samples of low-density polypropylene (LDPE)/linear LDPE (LLDPE)/high-density polypropylene (HDPE) with varying ratios of LDPE (20–45 ... wt%) and LLDPE (25–50 wt%) having a fixed amount of HDPE at 30 wt% were prepared by blown film extrusion technique. The samples were aged at four different temperatures, 55°, 70°, 85°, and 100°C, for four different time periods in the interval of between 150 hours and up to 600 hours. The change in the structure of various constituents and the formation of various oxygenated (peroxy and hydroperoxy) and unsaturated groups during thermo-oxidative degradation was discussed by infrared spectroscopy. The visiosity-average molecular weight was found to have decreased slowly in the initial aging hours and temperatures, whereas it decreased by 10% with its previous value tensile strength that is, 100°C when aged for 600 hours. The tensile strength of the sample first increased by 67% at 55°C and 89% at 70°C up to 450 hours, whereas the values increased by 52.5% at 85°C and 33.9% at 100°C when aged for 150 hours and then decreased. The percentage elongation at break increased by 2.7% at 55°C and 10.7% at 70°C for 150 and 300 hours of aging, respectively, whereas the percentage decreased when aged at 85°C and 100°C for up to 600 hours of aging. The values of gel content (percent) increased and initial degradation temperature decreased with aging time and temperature.  相似文献   

14.
对富拉尔基发电总厂5号炉的设计条件进行了分析,针对燃用低硫煤,飞灰比电阻高,场地较小,除尘效率要求高的情况,在电除尘器的设计上采取有效措施,达到了排放要求。  相似文献   

15.
Establishing carbon balances has been proven to be an applicable and powerful tool in testing biodegradability of polymers. In controlled degradation tests at a 4-L scale with the model polymer poly(-hydroxybutyrate) (PHB), it was shown that the degree of degradation could not be determined with satisfactory accuracy from CO2 release alone. Instead, the course of degradation was characterized by means of establishing carbon balances for the degradation of PHB withAcidovorax facilis and a mixed culture derived from compost. Different analytical methods for determining the different carbon fractions were adapted to the particular test conditions and compared. Quantitative determination of biomass and residual polymer were the main problems in establishing carbon balances. Amounts of biomass derived from protein measurements depend strongly on assumptions of the protein content of the biomass. Selective oxidation of biomass with hypochlorite was used as alternative, but here problems arose from insoluble metabolic products. Determination of soluble components with the method of chemical oxygen demand (COD) also includes empirical assumptions but seems acceptable if the dissolved carbon fraction is in the range of some 10% total carbon. Results confirm both analytical assays and theoretical approaches, in ending up at values very close to 100%, within an acceptable standard deviation range under test conditions comparable to standard test practice.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

16.
The effects of temperature on the release of chemical components of six solid organic materials under conditions of oversaturation were investigated in this paper. The six materials were peat moss (PM), weathered coals (WC), charred rice husks (CRH), sawdust (Sd), turfgrass clippings (TC), and chicken manure (CM). Significant differences were observed in the available nitrogen and phosphorus content of the aqueous extracts of organic materials at different temperatures. The available nitrogen content in aqueous extracts of PM and WC at 25 °C was higher than that registered at 15 °C and 35 °C. Available nitrogen content in the aqueous extracts of CRH, Sd, TC, and WC at 35 °C was higher than at 15 °C and 25 °C. The available phosphorus content in the aqueous extracts of organic materials at 35 °C was higher than that available at 15 °C and 25 °C, with the exception of Sd. In addition, the release of available phosphorus in the aqueous solution of organic materials at different temperatures varied constantly for 108 h. The release of potassium (K+) and sodium (Na+) ions in the aqueous extracts of organic materials was basically steady over time, with the exception of CM. High temperature (35 °C) may significantly hasten the release of K+ from organic substrates (except for WC) with low temperatures significantly inhibiting release of K+ in Sd and CRH. High temperatures (35 °C) might significantly facilitate the release of Na+ in CM and TC. However, no significant differences were manifested in the release of Na+ from organic substrates at different temperatures, with the exception of CM and TC. Moreover, no significant differences were observed in the release of calcium, magnesium and iron ions with time, nor were there any significant differences in the contents of iron ions in the aqueous extracts of organic materials at different temperatures. The results indicate that multiple mediums should be pretreated in water for a week before being used for planting. They should be used when all mineral elements of organic materials are steady and ignoring the effect of organic mediums.  相似文献   

17.
The simultaneous adsorption of copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb) ions from spiked deionized water and spiked leachate onto natural materials (peat A and B), by-product or waste materials (carbon-containing ash, paper pellets, pine bark, and semi-coke), and synthetic materials (based on urea-formaldehyde resins, called blue and red adsorbents) or mixtures thereof was investigated. The adsorbents that gave the highest metal removal efficiencies were peat A, a mixture of peat B and carbon-containing ash, and a mixture of peat A and blue. At an initial concentration of 5 mg/l for each metal, the removal of each species of metal ion from spiked water and spiked leachate solutions was very good (>90%) and good (>75%), respectively. When the initial concentration of each metal in the solutions was twenty times higher (100 mg/l), there was a noticeable decrease in the removal efficiency of Cu2+, Cd2+, and Ni2+, but not of Pb2+. Langmuir monolayer adsorption capacities, qm, on peat A were found to be 0.57, 0.37, and 0.36 mmol/g for Pb2+, Cd2+, and Ni2+, respectively. The order of metal adsorption capacity on peat A was the same in the case of competitive multimetal adsorption conditions as it was for single-element adsorption, namely Pb2+ > Cd2+ ≥ Ni2+. The results show that peat alone (an inexpensive adsorbent) is a good adsorbent for heavy metal ions.  相似文献   

18.
Journal of Material Cycles and Waste Management - This study characterizes the municipal solid waste (MSW) accumulated for more than 25 years at Bhalswa dumpsite, Delhi, India. 50...  相似文献   

19.
采用结构化/非结构化混合网格技术、多孔介质模型及k-ε两方程湍流模型,对某袋式除尘器及进出口管道内的气体流场进行了数值计算.计算结果表明,合理布置导流板后,袋式除尘器两箱体流量偏差为1.8%;除尘器下游滤袋单元处理气量偏大,中游滤袋单元处理气量较小,最大流量与最小流量偏差为22.3%;靠近除尘器进口处灰斗内存在气流回流特性,易造成粉尘的二次附着现象.  相似文献   

20.
The chemical recycling of poly(lactic acid) (PLA) to its monomer is crucial to reduce both the consumption of renewable resources for the monomer synthesis and the environmental impact related to its production and disposal. In particular, the production of lactic acid from PLA wastes, rather than from virgin raw materials, it is also possible to achieve considerable primary energy savings. The focus of this work is to analyse deeply the PLA hydrolytic decomposition by means of a kinetic model based on two reactions mechanism. To this end, new experimental data have been gathered in order to investigate a wider temperature range (from 140 to 180 °C) and to extend the water/PLA ratio up to 50 % of PLA by weight. The reported results clearly highlight that more than 95 % of PLA is hydrolyzed to water-soluble lactic acid within 120 min, when it is hydrolyzed within 160–180 °C. Furthermore, the kinetic constant is highly influenced by reaction temperature. The proposed “two reactions” kinetic mechanism complies satisfactorily with the experimental data under analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号