首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study presents carbon (δ13C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ13C of benzene ranged between (i) −21.7 ± 0.2‰, (ii) −27.6 ± 1.6‰ and (iii) −16.3 ± 2.2‰, respectively and δD of benzene ranged between (i) −73 ± 13‰, (ii) −111 ± 10‰ and (iii) −70 ± 24‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ13C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.  相似文献   

2.
《Chemosphere》2013,90(11):1407-1413
This study presents carbon (δ13C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption–gas chromatography–isotope ratio mass spectrometry (TD–GC–irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ13C of benzene ranged between (i) −21.7 ± 0.2‰, (ii) −27.6 ± 1.6‰ and (iii) −16.3 ± 2.2‰, respectively and δD of benzene ranged between (i) −73 ± 13‰, (ii) −111 ± 10‰ and (iii) −70 ± 24‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ13C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.  相似文献   

3.
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.  相似文献   

4.
Lysis of cyanobacteria with volatile organic compounds   总被引:2,自引:0,他引:2  
Ozaki K  Ohta A  Iwata C  Horikawa A  Tsuji K  Ito E  Ikai Y  Harada K 《Chemosphere》2008,71(8):1531-1538
One of bacteria collected from Lake Sagami, Japan, Brevibacillus sp., was found to have a lytic activity of cyanobacteria, but did not produce active compounds. Instead, the co-culturing of Microcystis with the Brevibacillus sp. enhanced the production of two volatile compounds, beta-cyclocitral and 3-methyl-1-butanol, and the former had a characteristic lytic activity. It was confirmed that these volatile compounds were derived from the cyanobacteria themselves. beta-Ionone, geosmin and 2-methylisoborneol derived from cyanobacteria and similar volatile compounds, terpenoids, produced by plants also had a lytic activity. The minimum inhibitory concentration values of the cyanobacterial metabolites were estimated to be higher than those of compounds from plants except for a few compounds. Among them, beta-cyclocitral only produced a characteristic color change of culture broth from green to blue. This color change is similar to the phenomenon observed when a sudden decline in growth of cyanobacteria begins in a natural environment.  相似文献   

5.
Microwave plasma conversion of volatile organic compounds   总被引:1,自引:0,他引:1  
A microwave-induced, steam/Ar/O2, plasma "torch" was operated at atmospheric pressure to determine the feasibility of destroying volatile organic compounds (VOCs) of concern. The plasma process can be coupled with adsorbent technology by providing steam as the fluid carrier for desorbing the VOCs from an adsorbent. Hence, N2 can be excluded by using a relatively inexpensive carrier gas, and thermal formation of oxides of nitrogen (NOx) is avoided in the plasma. The objectives of the study were to evaluate the technical feasibility of destroying VOCs from gas streams by using a commercially available microwave plasma torch and to examine whether significant byproducts were produced. Trichloroethene (TCE) and toluene (TOL) were added as representative VOCs of interest to a flow that contained Ar as a carrier gas in addition to O2 and steam. The O2 was necessary to ensure that undesirable byproducts were not formed in the process. Microwave power applied at 500-600 W was found to be sufficient to achieve the destruction of the test compounds, down to the detection limits of the gas chromatograph that was used in the analysis. Samples of the postmicrowave gases were collected on sorbent tubes for the analysis of dioxins and other byproducts. No hazardous byproducts were detected when sufficient O2 was added to the flow. The destruction efficiency at a fixed microwave power improved with the addition of steam to the flow that passed through the torch.  相似文献   

6.
《Chemosphere》1992,25(12):1797-1809
In this paper, the results obtained in the simultaneous passive sampling of toluene, hexane, methyl ethyl ketone and ethyl acetate on activated charcoal are presented and compared with results obtained when the compounds were tested individually. Any observed deviations in the sampling rate are possibly due to the variations in the adsorption efficiency or in the coefficients of desorption caused by the presence of more than one adsorbate, though in all cases the values obtained are within the accepted margins recommended by NIOSH  相似文献   

7.
ABSTRACT

This study reports on the occupational inhalation exposure to VOCs of workers in the Kuwaiti printing industry. Using the evacuated canister methodology, we targeted 72 VOCs in three printeries and compared the concentrations to previous reports and relevant occupational exposure levels (OELs). We found that recent efforts in the printing industry to reduce VOC usage had been successful, as concentrations of key hazardous VOCs were substantially lower than anticipated. On the other hand, nearly all target VOCs were found. Non-production areas were sampled along with the offset printing areas, another strength of this study, and revealed exposures to hazardous VOCs among administers and digital printer and CTP operators. Exposure to ototoxic VOCs amounted to 1–3% of the OEL, consisting mostly of ethylbenzene, which was likely in use in two of the study printeries. Exposure to carcinogenic or probably carcinogenic VOCs was 15–20% of the OEL at four locations across the three printeries, consisting mostly of vinyl chloride and benzyl chloride. Vinyl chloride VOC was partially sourced from outdoors, but was also likely used inside the study printeries. Interestingly, concentrations of vinyl chloride were similar in most sampling locations to that of CFC-114, a CFC banned by the Montreal Protocol and not commonly used as a refrigerant. This unexpected finding suggests further study is warranted to identify the use of these VOCs in printeries. Exposure to hazardous VOCs up to nearly 50% of the OEL, consisting largely of bromoform and vinyl chloride. Bromoform was found in all the study printeries, sourced partially from outdoor air. The higher concentrations found inside the study printeries likely resulted from the use of the desalinated water for washing. This finding raises of emissions from sources other than blanket washes, and inks, etc. adding to the total VOC load in printery indoor air.

Implications: Results from this study indicate that efforts to reduce worker exposure to VOCs particularly dangerous to human health in recent years have been successful, but there is still much to be done to protect workers. Exposures to ototoxic and carcinogenic VOCs were identified, among both production and non-production workers. Unexpected findings included the apparent use in printing activities of the carcinogen vinyl chloride and CFC-114, banned under the Montreal Protocol. Observed lapses in safety procedures included failure to utilize ventilation systems and closing doors between work areas, indicating management and worker education should remain a priority.  相似文献   

8.
The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.  相似文献   

9.
The Ostwald solubility coefficient, L of 17 volatile organic compounds (VOCs) from the gas phase into water and dilute aqueous ammonia solutions was determined by the equilibrium partitioning in closed system-solid phase micro extraction (EPICS-SPME) method at 303 K and at 0-2.5 mol dm(-3) ammonia concentrations. Ammonia increased the solubility of all VOCs nearly linearly, but to a different extent. The difference in the solubility values in aqueous ammonia solutions (Lmix) compared to pure water (L) is explained on the basis of a Linear Solvation Energy Relationship (LSER) equation made applicable for solvent mixtures, logLmix - logL = x((sNH3 - sH2O)pi2H + (aNH3 - aH2O)Sigma2H + (bNH3 - bH2O)Sigmabeta2H + (vNH3 - VH2O)Vx). sNH3 - sH2O, aNH3 - aH2O, bNH3 - bH2O, vNH3 - vH2O are the differences of solvent parameters, x is the mole fraction, pi2H is the solute dipolarity-polarizability, Sigmaalpha2H is the effective hydrogen bond acidity of the solute, Sigmabeta2H is the effective hydrogen bond basicity of the solute and Vx, the McGowan characteristic volume. The most significant term was v, the phase hydrophobicity. The solubility behavior was explained by the change in structure of the aqueous solution: the presence of ammonia reduces the cavity effect. These findings show that the presence of compounds such as ammonia, frequently observed in environmental waters, especially wastewaters, affect the fugacity of VOCs, having consequences for the environmental partitioning of VOCs and having technical consequences towards wastewater treatment technologies.  相似文献   

10.
Although widely used in air quality regulatory frameworks, the term “volatile organic compound” (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and U.S. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products.
Implications:The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test methodologies and ambient evaporation. This paper provides ample evidence to warrant a reevaluation of regulatory standards and provides a framework for progressive developments based on reasonable and scientifically justifiable definitions of VOCs.  相似文献   

11.
Volatile organic compounds (VOCs) emitted from poultry production are leading source of air quality problems. However, little is known about the speciation and levels of VOCs from poultry production. The objective of this study was the speciation of VOCs from a poultry facility using evacuated canisters and sorbent tubes. Samples were taken during active poultry production cycle and between production cycles. Levels of VOCs were highest in areas with birds and the compounds in those areas had a higher percentage of polar compounds (89%) compared to aliphatic hydrocarbons (2.2%). In areas without birds, levels of VOCs were 1/3 those with birds present and compounds had a higher total percentage of aliphatic hydrocarbons (25%). Of the VOCs quantified in this study, no single sampling method was capable of quantifying more than 55% of compounds and in several sections of the building each sampling method quantified less than 50% of the quantifiable VOCs. Key classes of chemicals quantified using evacuated canisters included both alcohols and ketones, while sorbent tube samples included volatile fatty acids and ketones. The top five compounds made up close to 70% of VOCs and included: 1) acetic acid (830.1 μg m?3); 2) 2,3-butanedione (680.6 μg m?3); 3) methanol (195.8 μg m?3); 4) acetone (104.6 μg m?3); and 5) ethanol (101.9 μg m?3). Location variations for top five compounds averaged 49.5% in each section of the building and averaged 87% for the entire building.  相似文献   

12.
Qualitative analysis of volatile organic compounds on biochar   总被引:6,自引:0,他引:6  
Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and were observed to possess diverse sorbed VOC composition. There were over 140 individual chemical compounds thermally desorbed from some biochars, with hydrothermal carbonization (HTC) and fast pyrolysis biochars typically possessing the greatest number of sorbed volatiles. In contrast, gasification, thermal or chemical processed biochars, soil kiln mound, and open pit biochars possessed low to non-detectable levels of VOCs. Slow pyrolysis biochars were highly variable in terms of their sorbed VOC content. There were no clear feedstock dependencies to the sorbed VOC composition, suggesting a stronger linkage with biochar production conditions coupled to post-production handling and processing. Lower pyrolytic temperatures (?350 °C) produced biochars with sorbed VOCs consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars (>350 °C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects.  相似文献   

13.
Effects of airborne volatile organic compounds on plants   总被引:4,自引:0,他引:4  
Routine measurements of volatile organic compounds (VOCs) in air have shown that average concentrations are very much smaller than those used in laboratory experiments designed to study the effects of VOCs on plants. However, maximum hourly concentrations of some VOCs can be 100 times larger than the average, even in rural air. Experimental studies have rarely extended for longer than a few days, so there is little information on potential long-term effects of exposure to small concentrations. This review considers the available evidence for long-term effects, based on laboratory and field data. Previous reviews of the literature from Germany and the USA are cited, prior to an assessment of the effects of individual VOCs. Although hydrocarbons from vehicle exhausts have been implicated in the observed effects on roadside vegetation, the evidence suggests that it is the nitrogen oxides in the exhaust gases that are mostly responsible. There is evidence that aromatic hydrocarbons can be metabolised in plants, although the fate of the metabolites is not known. There is a large literature on the effects of ethylene, because of its role as a plant hormone. Effects have been reported in the field, in response to industrial emissions, and dose-response experiments over several weeks in laboratory studies have clearly identified the potential for effects at ambient concentrations. The main responses are morphological (e.g. epinasty), which may be reversible, and on the development of flowers and fruit. Effects on seed production may be positive or negative, depending on the exposure concentration. Chlorinated hydrocarbons have been identified as potentially harmful to vegetation, but only one long-term experiment has studied dose-response relationships. As for ethylene, the most sensitive indication of effect was on seed production, although long-term accumulation of trichloroacetic acid in tissue may also be a problem. There is little evidence of the direct effects of oxygenated hydrocarbons on plants. Plants are a significant emission source of short-chain alcohols, aldehydes and ketones. Peroxyacetyl nitrate (PAN) has a well-documented history as damaging to vegetation. There have been few long-term experimental studies despite the field evidence for damaging effects. Early studies in California have been followed by more recent data from east Asia, but there is still a dearth of information on the potential for effects of PAN and related peroxyacyl nitrates on vegetation typical of regions around tropical and sub-tropical cities where PAN pollution is increasingly important. The lack of long-term measurements, coupled with the available evidence that effects are not linearly related to 'dose' measured as the product of exposure concentration and time, means that the possibility of adverse effects of VOCs on vegetation cannot be safely rejected, particularly in urban and industrial areas. Although reproductive processes (flowering, seed production) appear to be most sensitive, there have been no experimental studies on subsequent seed viability and the consequences at the ecosystem level of changes to plant phenology. The potential for VOC metabolites to accumulate in plant tissue has been demonstrated, but any subsequent effects on herbivores and phytophagous insects have yet to be investigated.  相似文献   

14.
采用热脱附-气相色谱/质谱联用法对4辆处于静止状态下的车辆内部空气中挥发性有机物(VOCs)进行了研究,共定性检出了48种有机物,其中C6~C9之间的组分较多;并对VOCs的总浓度进行了定量,1#~4#车分别为1846、2289、1104和3146μg/m3;其中BTEX占VOCs总量的20%~30%;车内VOCs浓度与温度及车辆使用年限密切相关。  相似文献   

15.
室内空气中挥发性有机物采样方法进展   总被引:8,自引:0,他引:8  
介绍了近年来室内空气中挥发性有机物的各种采样方法及适用范围,其中重点介绍了美国环保署最新版的TO-17方法和J.Pawliszyn发明的固相微萃取法(SPME),并对一系列的采样方法进行了比较,阐述了这些方法在国内外的应用及研究进展,同时讨论了这些方法的局限性。  相似文献   

16.
采用热脱附-气相色谱/质谱联用法对4辆处于静止状态下的车辆内部空气中挥发性有机物(VOCs)进行了研究,共定性检出了48种有机物,其中C6~C9之间的组分较多;并对VOCs的总浓度进行了定量,1#~4#车分别为1846、2289、1104和3146 μg/m^3;其中BTEX占VOCs总量的20%~30%;车内VOCs浓度与温度及车辆使用年限密切相关.  相似文献   

17.
房屋装修后1周、1个月、3个月、6个月、12个月采集其室内空气样品进行甲醛、苯系物浓度的测定,分析释放规律;另选某处新居于装修后24 h、1周、1个月且密闭状态下采集室内空气中总挥发性有机化合物(TVOC)样品分析研究.结果表明,房屋装修后12个月内甲醛浓度随时间呈非线性递减,多项式回归方程为:y=0.277 13-0.199 72x+0.079 74x2-0.011 67x3+0.000 525 61x4,其中y为甲醛质量浓度,mg/m3;x为时间,月;各苯系物浓度也随时间呈逐渐下降趋势,且通过SPSS13.0软件进行Spearman相关性分析,发现各苯系物间显著相关;装修后不同时间段室内空气中TVOC组分发生变化,随着房屋封闭时间延长,TVOC浓度超标严重;TVOC组分的增多或减少是由于室内装修材料TVOC释放的增强或减弱,以及门窗缝隙所带来的微弱通风造成,无二次污染物的生成.  相似文献   

18.
From November 1995 to October 1996, airborne concentrations of VOCs were measured in the Madrid area to study the organic pollution in general, and the correlation between different pollutants in relation to such parameters as location and season. Mean concentrations for up to 90 compounds were measured at four test sites, including both urban and suburban areas. At the urban sites, maximum concentrations occurred in the autumn and winter, whereas minimum concentrations were reached in summer and spring. Similar changes were obtained for the lesscontaminated site located in the SE of the city, whereas a different pattern was found at the site in the NW of the city due to meteorological aspects. Mean levels of hydrocarbons in Madrid were quite similar to those found in other European cities. Chemometrical techniques were applied to the set of data in order to assess the influence of such factors as traffic, temperature and seasonal variations on the VOC levels.  相似文献   

19.
The Henry's law constant is important in the gas-liquid mass transfer process. Apparent dimensionless Henry's law constant, or the gas-liquid partition coefficient (K'H), for both hydrophilic (methanol, isopropyl alcohol, and acetone) and hydrophobic (toluene and p-xylene) organic compounds in deionized (DI) water, a wastewater with a maximum total dissolved organic carbon (DOC) content of 700 mg/L, and DI water mixed with a maximum activated sludge suspended solid (SS) concentration of 40,000 mg/L were measured using the single equilibrium technique at 293 K. Experimental results demonstrate that the K'H of any of the test volatile organic compounds varied among three situations. First, the K'H of the hydrophilic compounds in mixed liquor with the maximum SS concentration was 9-21% higher than those in DI water. Second, those for toluene and p-xylene were 77% and 93% lower, respectively, in the mixed liquor with the maximum SS concentration. Third, the K'H values of all of the test compounds in the wastewater were only 10% lower than those in DI water. A model was developed to relate K'H with wastewater DOC and the SS concentration in the activated sludge using an organic carbon-water partition coefficient and activated sludge-water partition coefficient as model parameters. The model was verified and model parameters for test compounds estimated.  相似文献   

20.
Ambient volatile organic compounds (VOCs) samples were collected at three locations, two in urban areas in Greater Cairo (Ramsis and Haram) and background one in rural area in Menofiya province (Kafr El-Akram), during the period of June, 2004–August, 2004. The highest concentrations of VOCs were found in Ramsis, whereas the lowest concentrations were detected in Kafr El-Akram, and the difference in mean concentrations were statistically significant (p<0.001). Among all of the measured VOCs species, the contribution of individual VOC to the total VOCs concentration were very similar in Ramsis and Haram locations, toluene was the most abundant compound followed by (m, p)-xylene. This similarity implies a similar emission sources of VOCs in both urban locations, vehicle exhausts are the dominant one. Greater Cairo has high levels of volatile aromatic hydrocarbons compared with many polluted cities in the world. The BTEX (benzene: toluene: ethylbenzene: xylenes) concentration ratios were (2.01:4.94:1:4.95), (2.03:4.91:1:4.87) and (2.31:2.98:1:2.59) in Ramsis, Haram and Kafr El-Akram, respectively. The average toluene/benzene (T/B), (m, p)-xylene/benzene ((m, p)-X/B) and o-xylene/benzene (o-X/B) concentration ratios were 2.45, 1.61and 0.85, respectively in Ramsis and 2.42, 1.61 and 0.78, respectively in Haram. The ratios in both urban locations were of the same magnitude and close to those obtained from automotive exhausts, indicating that the ambient BTEX originate mainly from motor vehicle emissions. However, the (T/B), ((m, p)-X/B) and (o-X/B) concentration ratios were 1.29, 0.71 and 0.41 in Kafr El-Akram, respectively. These ratios were lower than those found in Ramsis and Haram locations and in automotive exhaust, suggesting that the BTEX in Kafr El-Akram do not come from a local source and are exclusively results from the diffusion and dispersion of VOCs produced from the traffic density in the surrounding cities. Significant positive correlation coefficients (p<0.001) were found between the concentrations of BTEX compounds at the three sampling locations. The diurnal variation of VOCs concentrations in Ramsis location showed two daily peaks linked to traffic density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号