首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear Brook Watershed in Maine (BBWM) is a long-term paired whole-watershed experimental acidification study demonstrating evidence of each of these acidification characteristics in a northeastern U.S. forested ecosystem. In 2003, BBWM soils were studied using the Hedley fractionation procedure to better understand mechanisms of response in soil Al, Fe, and P chemistry. Soil P fractionation showed that recalcitrant P was the dominant fraction in these watersheds (49%), followed by Al and Fe associated P (24%), indicating that a majority of the soil P was biologically unavailable. Acidification induced mobilization of Al and Fe in these soils holds the potential for significant P mobilization. Forest type appears to exert important influences on metal and P dynamics. Soils supporting softwoods showed evidence of lower Al and Fe in the treated watershed, accompanied by lower soil P. Hardwood soils had higher P concentrations in surface soils as a result of increased biocycling in response to N additions in treatments. Accelerated P uptake and return in litterfall overshadowed acidification induced P mobilization and depletion mechanisms in hardwoods.  相似文献   

2.
The Bear Brook Watershed in Maine (BBWM), USA is a paired watershed study with chemical manipulation of one watershed (West Bear = WB) while the other watershed (East Bear = EB) serves as a reference. Characterization of hydrology and chemical fluxes occurred in 1987–1989 and demonstrated the similarity of the ca. 10 ha adjacent forested watersheds. From 1989–2010, we have added 1,800 eq (NH4)2SO4 ha???1 y???1 to WB. EB runoff has slowly acidified even as atmospheric deposition of SO $_{4}^{2-}$ has declined. EB acidification included decreasing pH, base cation concentrations, and alkalinity, and increasing inorganic Al concentration, as SO $_{4}^{2-}$ declined. Organic Al increased. WB has acidified more rapidly, including a 6-year period of increasing leaching of base cations, followed by a long-term decline of base cations, although still elevated over pretreatment values, as base saturation declined in the soils. Sulfate in WB has not increased to a new steady state because of increased anion adsorption accompanying soil acidification. Dissolved Al has increased dramatically in WB; increased export of particulate Al and P has accompanied the acidification in both watersheds, WB more than EB. Nitrogen retention in EB increased after 3 years of study, as did many watersheds in the northeastern USA. Nitrogen retention in WB still remains at over 80%, in spite of 20+ years of N addition. The 20-year chemical treatment with continuous measurements of critical variables in both watersheds has enabled the identification of decadal-scale processes, including ecosystem response to declining SO $_{4}^{-2}$ in ambient precipitation in EB and evolving mechanisms of treatment response in WB. The study has demonstrated soil mechanisms buffering pH, declines in soil base saturation, altered P biogeochemistry, unexpected mechanisms of storage of S, and continuous high retention of treatment N.  相似文献   

3.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   

4.
Buried mineral soil-bags and natural solutions were studied as indicators of forest ecosystem response to elevated N and S inputs at the Bear Brook Watershed in Maine (BBWM). The BBWM is the site of a paired watershed manipulation experiment in a northern New England forested ecosystem. The study includes two small (10 ha each) catchments dominated by northern hardwood forests with red spruce in the upper elevations. Treatments consist of (NH4)2SO4 applied to the West Bear watershed six times per year, increasing N and S deposition 3× and 2× above ambient values, respectively. Buried mineral soil-bag changes over time reflected both the native soil environment and the treatments. Most of the treatment effects on mineral soils were evident as higher inorganic S found in the treated watershed soils. Adsorbed SO4 in the buried mineral soil-bags increased by approximately 40% under softwood stands and 50% under hardwood stands over the study period. Hardwood soil solutions responded with significant increases in NO3 and SO4 concentrations that resulted in accelerated cation leaching, primarily Ca and Al. Few differences that could be attributed to treatments were evident in soil solutions under softwoods. No treatment effects were evident in throughfall and stemflow chemistry.  相似文献   

5.
Chronic elevated nitrogen (N) deposition has altered the N status of temperate forests, with significant implications for ecosystem function. The Bear Brook Watershed in Maine (BBWM) is a whole paired watershed manipulation experiment established to study the effects of N and sulfur (S) deposition on ecosystem function. N was added bimonthly as (NH4)2SO4 to one watershed from 1989 to 2016, and research at the site has studied the evolution of ecosystem response to the treatment through time. Here, we synthesize results from 27 years of research at the site and describe the temporal trend of N availability and N mineralization at BBWM in response to chronic N deposition. Our findings suggest that there was a delayed response in soil N dynamics, since labile soil N concentrations did not show increases in the treated watershed (West Bear, WB) compared to the reference watershed (East Bear, EB) until after the first 4 years of treatment. Labile N became increasingly available in WB through time, and after 25 years of manipulations, treated soils had 10× more extractable ammonium than EB soils. The WB soils had 200× more extractable nitrate than EB soils, driven by both, high nitrate concentrations in WB and low nitrate concentrations in EB. Nitrification rates increased in WB soils and accounted for ~?50% of net N mineralization, compared to ~?5% in EB soils. The study provides evidence of the decadal evolution in soil function at BBWM and illustrates the importance of long-term data to capture ecosystem response to chronic disturbance.  相似文献   

6.
Foliar chemistry was examined in mature sugar maple (Acer saccharum Marsh), red maple (Acer rubrum L.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) in response to chronic, watershed-level additions of ammonium sulfate [(NH4)2SO4]. Following four years of treatment, N concentrations were significantly higher in foliage from the treated watershed for all four species, with increases ranging from 6% in American beech to 33% in sugar maple. Sugar maple foliage from the treated watershed had significantly lower Ca concentrations (18%). Concentrations of K were significantly lower in beech (13%) and red spruce (9%) from the treated watershed. Foliar Mg was not different between watersheds. Aluminum concentrations were significantly higher in the foliage from the treated watershed for beech (18%), red maple (33%), and sugar maple (65%), but no differences in Al concentration occurred in current year red spruce foliage. Red spruce foliage resampled following a fifth year of treatment contained higher concentrations of N and Al and lower concentrations of Ca and Mg in the treated watershed. Despite these differences in red spruce foliar chemistry, wood production and density did not appear to be affected by the treatment.Differences in the foliar chemistry between the treated and untreated watershed may reflect the temporal and spatial integration of changes taking place in the soil of the treated watershed. Increased N is likely directly due to the N contained in the (NH4)2SO4 treatment. Labile Ca and other cations in the treated watershed would be expected to initially increase and then decrease in response to the treatment, with these changes beginning at the top of the forest floor. Thus, lower cation concentrations in foliage from the treated watershed may reflect the fact that cations in the uppermost portions of the soil were rapidly depleted, even though deeper soil layers were experiencing increased Ca release due to cation exchange effect of the acidification. The generally higher Al in foliage from the treated watershed is likely due to the mobilization of inorganic Al in the soil as has been reported previously for the treated watershed. Collectively these results suggest that the long-term deposition of acidifying substances containing N and S not only influence the cycling of N within these systems, but may also alter the cycling of other important nutrients and Al.  相似文献   

7.
The Bear Brook Watershed in Maine (BBWM), USA, and the Fernow Experimental Forest in West Virginia, USA, represent unique, long-term, paired, whole watershed, experimental manipulations focusing on the effects of nitrogen (N) and sulfur (S) deposition on temperate forests. Both watersheds began whole-ecosystem additions of N and S as (NH4)2SO4 in the fall of 1989, and both are entering their third decade of chronic enrichment of the treated watersheds, while the reference watersheds offer unique opportunities to evaluate forest watershed responses to recovery. Differences between BBWM and Fernow in the history of atmospheric deposition, soil properties, and forest composition all contribute to different response trajectories in stream chemical exports over time. The four watersheds represent a spectrum of N enrichment and retention, ranging from ≈98% N retention in the reference watershed in Maine, to ≈20% N retention in the treated watershed in West Virginia. Despite these differences, there is evidence that mechanisms of response in base cation leaching and other processes are similar among all four watersheds. In both cases, the history to date of two decades of research and monitoring has provided new insights into ecosystem response not evident in more traditional short-term research.  相似文献   

8.
Declining forest health has been observed during the past several decades in several areas of the eastern USA, and some of this decline is attributed to acid deposition. Decreases in soil pH and increases in soil acidity are indicators of potential impacts on tree growth due to acid inputs and Al toxicity. The Cherry River watershed, which lies within the Monongahela National Forest in West Virginia, has some of the highest rates of acid deposition in Appalachia. East and West areas within the watershed, which showed differences in precipitation, stream chemistry, and vegetation composition, were compared to evaluate soil acidity conditions and to assess their degree of risk on tree growth. Thirty-one soil pits in the West area and 36 pits in the East area were dug and described, and soil samples from each horizon were analyzed for chemical parameters. In A horizons, East area soils averaged 3.7 pH with 9.4 cmolc kg???1 of acidity compared to pH 4.0 and 6.2 cmolc kg???1 of acidity in West area soils. Extractable cations (Ca, Mg, and Al) were significantly higher in the A, transition, and upper B horizons of East versus West soils. However, even with differences in cation concentrations, Ca/Al molar ratios were similar for East and West soils. For both sites using the Ca/Al ratio, a 50% risk of impaired tree growth was found for A horizons, while a 75% risk was found for deeper horizons. Low concentrations of base cations and high extractable Al in these soils translate into a high degree of risk for forest regeneration and tree growth after conventional tree harvesting.  相似文献   

9.
Mean annual concentration of ${\textrm{SO}}_{4}^{2-}$ in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO2. Emissions of NOx have not changed substantially, but deposition has declined slightly at BBWM. Base cations, ${\textrm{NH}}_{4}^{+}$ , and Cl??? concentrations were largely unchanged, with small irregular changes of <1 μeq L???1 per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June–October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November–May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled ${\textrm{NO}}_{3}^{-}$ and K?+?. They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than ${\textrm{SO}}_{4}^{2-}$ , with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH4)2SO4 enhanced acidification of West Bear Brook’s (WB) watershed. Despite the manipulation, ${\textrm{NH}}_{4}^{+}$ concentration remained below detection limits at WB, while leaching of ${\textrm{NO}}_{3}^{-}$ increased. The seasonal pattern for ${\textrm{NO}}_{3}^{-}$ concentrations in WB, however, remained similar to EB. Mean monthly concentrations of ${\textrm{SO}}_{4}^{2-}$ have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca2?+?, Mg2?+?, and K?+? due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.  相似文献   

10.
A major tool used in the assessment of anthropic atmospheric effects on aquatic and terrestrial ecosystems is biogeochemical nutrient cycling and budgets. However, to be most effective such study should be done in an ecosystem context. Also some assessment of natural variation in factors affecting nutrient cycling must be in place before trends, often subtle and long-term, attributable to man can be statistically quantified. The input and output balance of chemical species in watershed ecosystems is considerably influenced by ecosystem succession. It is hypothesized that during primary ecosystem succession chemical element output is initially relatively high due to rapid acidification and lack of plant uptake. Outputs decline during the period of high ecosystem productivity and biomass accumulation, and they again rise during late successional stages to approximate inputs from precipitation weathering, and aerosol capture. Glacier Bay provides a unique opportunity to quantify many mechanisms responsible for variation in nutrient cycles without the need for site manipulation. This is especially true for quantifying the rate and magnitude of natural acidification in ecosystems. The park has a spectrum of watersheds differing in stage of primary and secondary succession following deglaciation. These sites are not now subjected to or altered by anthropic atmospheric inputs. The objectives of this research were (1) determine the rate of soil chemical change which occurs following deglaciation, (2) relate soil acidification to presence of organic matter, soil NO inf3 sup- , and total N, (3) estimate the downward movement of ionic species within the soil profiles with increasing acidification from advancing plant succession, and (4) determine if such processes and ionic movements might be reflected in watershed stream ionic outputs. We studied five watersheds ranging from 40–350 years since deglaciation. Soil samples were collected and lysimeters installed in seven vegetation successional stages following deglaciation. An anion of ecological importance and a common air contaminant is NO inf3 sup- , and its discharge in streamflow from early successional ecosystems was found to be high. The terrestrial biota in such systems was dominated by Alnus sinuata, a major nitrogen fixer. Stream discharge of NO inf3 sup- suggested that early successional ecosystem N fixation exceeded biotic uptake. This was confirmed by examining NO inf3 sup- in soil extractions and lysimeters. This process was particularly evident beneath >20-year old Alnus (forty years since deglaciation). concurrent with increased NO inf3 sup- concentrations below the rooting zone was increased H+ which increased 100x during 25 years of primary succession. This natural acidification from a mobile NO inf3 sup- ion resulted in an pronounced increase in soil base cation leaching and mobilization of aluminium in the soil profile. The magnitude and short time required for such acidification greatly exceeded anything projected or modeled for systems impacted by anthropic inputs. Stream SO inf4 sup2- concentrations also were high relative to precipitation inputs suggesting mineralization of sulfur within the ecosystem and/or poor soil adsorption of SO inf4 sup2- . This is an important finding in such ecosystems where cation nutrient ion levels are often very low. Should atmospheric inputs of SO inf4 sup2- increase additional loss of cations appears imminent. These data suggest that most early successional ecosystems at Glacier Bay would be sensitive to anthropic inputs of both NO inf3 sup- and SO inf4 sup2- . This is unusual in other ecosystems where many conserve ionic NO inf3 sup- inputs, and older systems have considerable SO inf4 sup2- adsorption capacity. The effect of any increased atmospheric inputs of these ions would be accelerated cation leaching and ecosystem acidification.Contribution from Fourth World Wilderness Congress—Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

11.
Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea.  相似文献   

12.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

13.
The paired watershed experiment at the Bear Brook Watershed in Maine (BBWM) provided an opportunity to study changes in forest soil O horizon properties as a result of experimental, chronic N additions. The West Bear brook watershed received elevated N and S inputs since November 1989 as bimonthly applications of (NH4)2SO4. Forest floor samples (O horizon) were collected in July of 1992 from three dominant stand and five soil types at BBWM. The (NH4)2SO4 amendments in the treated watershed (West Bear) stimulated potential net nitrification, but significant increases were found only in hardwood O horizons after three years of treatment. Hardwood stand forest floor soil materials had the lowest C:N ratios (mean=23), compared with mixedwood (mean=27) and softwood stands (mean=33). NH4-N accounted for over 95% of the inorganic N in the forest floor. The lack of a strong relationship between soil type and potential net N mineralization at BBWM, coupled with conflicting results in the literature, suggested that stand characteristics were more important than conventional soil nomenclature based on pedogenetic features, or 2.5 years of treatments, in defining differences in soil N dynamics and responses to increased N inputs.  相似文献   

14.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献   

15.
Despite decades of research about episodic acidification in many regions of the world, the understanding of what controls the transient changes in stream water chemistry occurring during rain and snow melt events is still limited. Here, we use 20 years of hydrological and stream chemical data from the paired watershed study at Bear Brook Watershed in Maine (BBWM), USA to improve the understanding of the effects of acid deposition on the causes, drivers, and evolution of episodic acidification. The long-term experimental study at BBWM includes 18 years of chemical treatment of the West Bear Brook (WB) watershed with (NH4)2SO4. East Bear Brook (EB) serves as reference. The treatment started in 1989 following a 2-year pretreatment period. We analyzed 212 hydrological episodes using an episode model that can separate and quantify individual drivers of the transient change in acid-neutralizing capacity (ANC) during hydrological events. The results suggest that 18 years of N and S addition have not affected the natural drivers of episodic acidification of base-cation dilution, marine sea salt episodes, or organic acidity during rain and snow melt events. The contribution of SO $_{4}^{2-}$ to the ANC decline in WB has been increasing linearly since the beginning of watershed treatment, while the role of NO $_{3}^{-}$ has remained relatively constant after an initial increase. This is contradictory to many previous shorter-term studies and illustrates the need for a more mechanistic understanding of the causes and drivers of episodic acidification during rain- and snow melt-driven hydrological events.  相似文献   

16.
Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0–10, 10–20, and 20–40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is now being analyzed for the 1986 treatment year. In leachate collected from the upper horizons of the soil colums, there was a significant difference in pH, alkalinity, nitrate, and sulfate concentrations between the pH 5.4 and pH 4.2 precipitation treatments. This difference, however, disappears at the bottom of the columns. This could be partly due to exchange reactions in the B horizon. The pH and alkalinities are higher in bottom leachate. Chloride and nitrate also increased significantly due mainly to concentrating effects. Even with a pickup of sulfate in the B horizon, sulfate adsorption decreased bottom leachate concentrations well below surface values.Alkalinity, pH, and sulfate concentration in the leachate decreased over the treatment season. Nitrate concentration increased by 4- to 5-fold over the season. Leachate from the bottom of the soil columns is becoming more acidic with time with negative alkalinities appearing more frequently in columns with soils of lower base saturation. There were some significant alkalinity differences due to humus treatments; however, these were not consistent between pH treatments, and need further study. This research will eventually answer whether soil processes can be important to the acidification of lakes in poor, sandy, outwash plains of the Superior Uplands, and whether a reduction in acid sulfate deposition will reverse the percolate alkalinity from negative to positive.Contribution from Fourth World Wilderness Congress-Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   

17.
Since the 1950s afforestation of degraded land has been the principal means of combatting erosion in a seasonally arid area of central Spain. In the 1970s tree planting of steep hillsides and gully sides was preceded by bench terracing. Experimental sites have been established to monitor runoff and soil losses under mature Pinus forest, 12-year-old Pinus forest, and Cistus matorral. The experiment is being conducted at three scales: large gully or small watershed (c. 3.5 ha), runoff erosion plot (10–21.5 m2), and rainfall simulation plot (1 m2). Monitoring began in October 1992. Discharge was recorded continuously, while sediment loss and soil moisture content were measured on a storm basis. The paper presents summary data on runoff and soil erosion for the three scales and comments on relationships between land management, site characteristics, and these losses. We stress the crucial role of vegetation and its interrelationship with soil properties such as structure and aggregate stability. Matorral was effective in combatting water and soil loss, but we question the practice of afforesting seasonally arid, steeply sided areas that have highly erodible soils.  相似文献   

18.
Soil acidification, caused by elevated anthropogenic deposition, has led to concerns over nutrient imbalances in Ontario's sugar maple (Acer saccharum Marsh.) forests. In this study, soil chemistry, foliar chemistry, crown condition, and tree growth were measured at 36 sugar maple stands that included acidic (pH?相似文献   

19.
Air pollution induced changes were observed both in plant communities and in soil chemistry in forest ecosystems near the nickel-copper smelter in the Kola Peninsula, Russia. All measured forest plant community parameters describing their floristic composition and structure were affected by pollution. Heavy metals were significantly concentrated in organic horizons of forest soils. The concentrations of ammonium acetate-extractable nickel and copper in organic horizons near the smelter were approximately two orders of magnitude higher than the background levels in the region. Based on pH values, air pollution has not resulted in a detectable topsoil acidification near the smelter. However, concentrations of extractable magnesium, potassium and nitrogen in organic horizons tended to be lower towards the smelter. The spatial variability of data obtained results in necessity of the two complementary, macroscopic and microscopic, approaches to ecosystem investigation. The macroscopic approach better revealed the influence of pollution. The ordination of the major species diversity indexes was highly related to soil properties, suggesting that the content of heavy metals and nutrients is the best soil related predictor of species diversity in polluted areas. Besides direct input of pollutants from the atmosphere, soil contamination and nutritional disturbance contribute significantly to the observed vegetation damage in subarctic forest ecosystems.  相似文献   

20.
Controls on N Retention and Exports in a Forested Watershed   总被引:4,自引:0,他引:4  
We conducted a 15N-tracer study in a fertilized, forested catchment at the Bear Brook Watersheds in Maine (BBWM), USA, in order to characterize N cycling processes, identify sinks for ammonium-N additions, and determine the contribution of the experimental ammonium additions to nitrate exports from the treated catchment. Distributions of 15N in plant tissues, soils, precipitation and streamwater collected before adding tracers showed that nitrate-N (the dominant form of inorganic N deposition at the site) inputs under ambient conditions were depleted in 15N relative to plants and that soil was enriched in 15N relative to plants. The 15N content of streamwater nitrate was within the range of 15N contents in natural plant tissues, suggesting that nitrate deposited from the atmosphere is reduced and assimilated into soil and plant N pools before being leached as nitrate from the catchment. Variations in 15N natural abundances also suggested that most N uptake by trees is from the forest floor and that nitrification occurs in soils at this catchment under ambient conditions. Changes in 15N contents of plant tissues, soils and streamwater after adding a 15N tracer to the ammonium sulfate fertilizer applied to the treated catchment showed that soils were the dominant sink for the labeled ammonium. Surface soils (Oca horizon plus any underlying mineral soil to 5cm depth) assimilated 19 to 31 percent of the 42 kg ha-1 of 15N-labelled ammonium-N during the tracer study. Aboveground biomass assimilated 8 to 17 percent of the labeled ammonium-N additions. Of the three forest types on the catchment, the soil:biomass assimilation ratio of labeled-N was highest in the spruce forest, intermediate in the beech-dominated hardwood forest and lowest in the mixed hardwood-spruce forest. Although ammonium sulfate additions led to increases in streamwater nitrate, only 2 of the 13 kg ha-1 of nitrate-N exported from the catchment during the 2 years of tracer additions was derived from the 42 kg ha-1 of labeled ammonium-N additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号