首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clemente R  Bernal MP 《Chemosphere》2006,64(8):1264-1273
The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils.  相似文献   

2.
Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils.  相似文献   

3.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

4.
Jiang LY  Yang XE  He ZL 《Chemosphere》2004,55(9):1179-1187
Phytoremediation is a promising approach for cleaning up soils contaminated with heavy metals. Information is needed to understand growth response and uptake mechanisms of heavy metals by some plant species with exceptional capability in absorbing and superaccumulating metals from soils. Greenhouse study, field trial, and old mined area survey were conducted to evaluate growth response and Cu phytoextraction of Elsholtzia splendens in contaminated soils, which has been recently identified to be tolerant to high Cu concentration and have great potential in remediating contaminated soils. The results from this study indicate that the plant exhibited high tolerance to Cu toxicity in the soils, and normal growth was attained up to 80 mg kg(-1) available soil Cu (the NH4OAc extractable Cu) or 1000 mg kg(-1) total Cu. Under the field conditions, a biomass yield of 9 ton ha(-1) was recorded at the soil available Cu level of 77 mg kg(-1), as estimated by the NH4OAc extraction method. Concentration-dependent uptake of Cu by the plant occurred mainly at the early growth stage, and at the late stage, there is no difference in shoot Cu concentrations grown at different extractable soil Cu levels. The extractability of Cu from the highly polluted soil is much greater by the roots than that by the shoots. The NH4OAc extractable Cu level in the polluted soil was reduced from 78 to 55 mg kg(-1) in the soil after phytoextraction and removal of Cu by the plant species for one growth season. The depletion of extractable Cu level in the rhizosphere was noted grown in the mined area, even at high Cu levels, the NH4OAc extractable Cu in the rhizosphere was 30% lower than that in the bulk soil. These results indicate that phytoextraction of E. splendens can effectively reduce the plant-available Cu level in the polluted soils.  相似文献   

5.
Grain Cd concentrations were determined in wheat (Triticum aestivum L.) grown in 1999, 2001 and 2003, at six sludge cake field experiments. Three of these sites also had comparisons with Cd availability from metal amended liquid sludge and metal salts. Grain Cd concentrations in all years and at all sites were significantly linearly correlated with NH4NO3 extractable Cd and soil total Cd (P<0.001). Soil extractability was greater in the liquid sludge and metal salt experiments than in the cake experiments, as were grain Cd concentrations. Across all the sites, NH4NO3 extractable soil Cd was no better at predicting grain Cd than soil total Cd. Stepwise multiple linear regression analysis showed that soil total Cd, pH and organic carbon were the only significant (P<0.001) variables influencing wheat grain Cd concentrations, explaining 78% of the variance across all field experiments (1408 plots). This regression predicted that the current UK soil total Cd limit of 3 mg kg(-1) was not sufficiently protective against producing grain above the European Union (EU) grain Cd Maximum Permissible Concentration (MPC) of 0.235 mg Cd kg(-1) dry weight, unless the soil pH was > 6.8. Our predictions show that grain would be below the MPC with > 95% confidence with the proposed new EU draft regulations permitting maximum total Cd concentrations in soils receiving sludge of 0.5 mg kg(-1) for soils of pH 5-6, 1 mg kg(-1) for soils of pH 6-7, and 1.5 mg kg(-1) for soils of pH > or = 7.  相似文献   

6.
Annual applications of (NH4)2SO4, NH4NO3 and urea on a Solonetzic soil at 112 kg N/ha for 10 consecutive years reduced pH levels from 5.6 for the check to 4.4, 4.9 and 5.3, respectively for (NH4)2SO4, NH4NO3 and urea. (NH4)2SO4 generated twice as much exchange acidity as NH4NO3 and four times as much as urea. Net extractable cations leached from the Ap horizon closely approximated the amount of exchange acidity generated by (NH4)2SO4 and NH4NO3 fertilizers. The levels of soil extractable Al and Mn were greatly enhanced by (NH4)2SO4 as were plant contents. Similar acidifying effects to that produced by the (NH4)2SO4 occurred when NH4NO3 was applied at 300 kg N/ha annually for 12 consecutive years in another field experiment on the same soil. Liming samples of the field (NH4)2SO4 acidified soils in the greenhouse, significantly increased yields and lowered the Al and Mn contents of the plants to normal levels.  相似文献   

7.
Electrokinetic-enhanced phytoremediation of soils: Status and opportunities   总被引:2,自引:0,他引:2  
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation–electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.  相似文献   

8.
Castaldi P  Santona L  Melis P 《Chemosphere》2005,60(3):365-371
The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.  相似文献   

9.
Lability of polycyclic aromatic hydrocarbons in the rhizosphere   总被引:2,自引:0,他引:2  
Cofield N  Banks MK  Schwab AP 《Chemosphere》2008,70(9):1644-1652
Remediation of soils containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) seldom results in complete removal of contaminants, but residual toxicity often is reduced. In this study, soil from a former manufactured gas plant site was treated for 12 months by phytoremediation and then tested for total PAHs, Tenax-TA extractable ("labile") PAHs, aqueous soluble PAHs (PAH(wp)) , and biotoxicity assessed by earthworms survival, nematode mortality, emergence of lettuce seedlings, and microbial respiration. Prior to phytoremediation, the soil had toxic impacts on all bioassays (except the nematodes), and 12 months of remediation decreased this response. Change in labile PAHs was a predictor for change in total PAH for 3- and 4-ring compounds but not for the 5- and 6-ring. Decreases in labile PAHs were correlated (r(2)>or=0.80) with toxicity in the bioassays except microbial respiration. PAH(wp) was correlated only with nematode toxicity prior to remediation but with none of the tests after remediation. Total PAHs were not correlated with any of the bioassay tests. Tenax-TA appears to have potential for predicting residual toxicity in remediated soils and is superior to total concentrations for that application.  相似文献   

10.

Remediation strategies using soil amendments should consider the time dependence of metal availability to identify amendments that can sustainably reduce available pollutant concentrations over time. Drying-wetting cycles were applied on amendments, soils and soil + amendment mixtures, to mimic ageing at field level and investigate its effect on extractable Cd, Cu, Ni, Pb and Zn concentrations from three contaminated soils. The amendments investigated were municipal waste organic compost and biochars. The amendments, soils and mixtures were characterised by their physicochemical properties at different ageing times. The amendments were also characterised in terms of sorption capacity for Cd and Cu. The sorption capacity and the physicochemical properties of the amendments remained constant over the period examined. When mixed with the soils, amendments, especially the compost, immediately reduced the extractable metals in the soils with low pH and acid neutralisation capacity, due to the increase in pH and buffering capacity of the mixtures. The amendments had a relatively minor impact on the metal availability concentrations for the soil with substantially high acid neutralisation capacity. The most important changes in extractable metal concentrations were observed at the beginning of the experiments, ageing having a minor effect on metal concentrations when compared with the initial effect of amendments.

  相似文献   

11.
Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.  相似文献   

12.
Luo W  Lu Y  Wang G  Shi Y  Wang T  Giesy JP 《Chemosphere》2008,72(5):797-802
Concentrations of arsenic (As) were determined in soils of 5 industrial sites in an urban area of Beijing, China. Fifty seven typical surface soils were sampled to determine total concentrations of metals, pH and dissolved organic carbon (DOC). One hundred and eight deep soils were submitted to a four-step, sequential extraction to assess the relative mobility and bioavailability of As in the soil profiles. Total concentrations of As in surface soils ranged from 5.7 to 2.3 x 10(1) mg kg(-1), dw with greater concentrations inside the perimeter of the chemical plant which had greater concentrations than did other plants. 75.4% of surface soil samples in the industrial area contained concentrations of As that were greater than was considered to be the background concentration of 7.8 mg kg(-1), dw for the region. The mean concentration (9.9 mg kg(-1), dw) in the industrial soils was greater than that soils from other type of land use. Concentrations of As were significantly and negatively correlated with soil pH and DOC in industrial soils. Although mean concentration of total As in the soils from all sites were less at greater depths, the entire range from 0 to 180 cm (especially 0-80 cm) contained concentrations of As that were greater than background. Sequential extractions of soil indicated that only some surface soils had relatively great amount of extractable fraction of As. Most soils had relatively great amount of residual As. This result suggests that most arsenic in Beijing industrial soils should be immobile and of limited bioavailability.  相似文献   

13.
Lai HY  Chen ZS 《Chemosphere》2004,55(3):421-430
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from contaminated soils. Vetiver grass (Vetiver zizanioides) has strong and long root tissues and is a potential phytostabilization plant since it can tolerate and grow well in soils contaminated with multiple heavy metals. Soil was moderately artificially contaminated by cadmium (20 mg/kg), zinc (500 mg/kg), and lead (1000 mg/kg) in pot experiments. Three concentrations of Na2-EDTA solution (0, 5, and 10 mmol/kg soil) were added to the contaminated soils to study the influence of EDTA solution on phytoextraction by rainbow pink or phytostabilization by vetiver grass. The results showed that the concentrations of Cd, Zn, and Pb in a soil solution of rainbow pink significantly increased following the addition of EDTA (p < 0.05). The concentrations of Cd and Pb in the shoots of rainbow pink also significantly increased after EDTA solution was applied (p < 0.05), but the increase for Zn was insignificant. EDTA treatment significantly increased the total uptake of Pb in the shoot, over that obtained with the control treatment (p < 0.001), but it did not significantly increase the total uptake of Cd and Zn. The concentrations of Zn and Pb in the shoots of rainbow pink are significantly correlated with those in the soil solution, but no relationship exists with concentrations in vetiver grass. The toxicity of highly contaminating metals did not affect the growth of vetiver grass, which was found to grow very well in this study. Results of this study indicate that rainbow pink can be considered to be a potential phytoextraction plant for removing Cd or Zn from metal-contaminated soils, and that vetiver grass can be regarded as a potential phytostabilization plant that can be grown in a site contaminated with multiple heavy metals.  相似文献   

14.
Mechanisms of phosphorus solubilisation in a limed soil as a function of pH   总被引:5,自引:0,他引:5  
Phosphorus (P) quantity-intensity relationships are central to the solubility and release of P from soil to water. Relationships between P extractable by 0.5 M NaHCO extractable P (Olsen P; quantity, Q) and P extractable by 0.01 M CaCl(2) (CaCl(2)-P; possible predictor of soil solution or drainage water P; intensity, I) are curvilinear: above a certain Olsen P concentration, CaCl(2)-P becomes much more soluble than when below it. Aluminium-, Fe- and Ca-P forms (extractable by Olsen's reagent) are thought to control P solubility. Thus, our objectives were to identify P forms in equilibrium with CaCl(2)-P via solubility equilibrium experiments, and the behaviour of CaCl(2)-P in relation to Al, Fe and Ca associated P, determined with 31P high power decoupling magic angle spinning nuclear magnetic resonance spectroscopy (31P HPDec/MAS NMR). Results indicated that two Q-I relationships occurred, one for soils above pH 5.8, and the other for soils below pH 5.8. Above pH 5.8, soils were saturated with respect to hydroxyapatite (Ca(5)(PO(4))(3)OH) and undersaturated with respect to beta-tricalcium phosphate (beta-Ca(3)(PO(4))(2)), while log ion-activity products showed that all soils and pHs were either saturated or in equilibrium with variscite (AlPO(4).2H(2)O) or its amorphous analogue. Using 31P HPDec/MAS NMR, Ca-P was best correlated with CaCl(2)-P in soils above pH 5.8, and with Al-P in soils below this pH. This study demonstrates the value of solid-state NMR in conjunction with wet chemical techniques for the study of labile P and P loss from pasture soils with a wide range of managements.  相似文献   

15.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   

16.
Aided phytostabilization is a technology that uses metal tolerant plants and organic and/or inorganic amendments to reduce soil metal bioavailability, while improving soil health. Our objective was to determine the effects of the application of amendments [sheep manure (SHEEP), poultry litter (POULTRY), cow slurry (COW), and paper mill sludge mixed with poultry litter (PAPER)], together with the growth of a metallicolous Festuca rubra L. population, on (i) chemical and microbial indicators of soil health and (ii) soil ecotoxicity, during the aided phytostabilization of a Zn/Pb contaminated mine soil. Amendment application led to an increase in soil pH, organic matter content, and inorganic salts, resulting in a decrease in Pb and Zn CaCl2-extractable concentrations in soil, which, in turn, contributed to lower ecotoxicity and a stimulation of plant growth and soil microbial communities. The factor most affecting the metal extractability was probably soil pH. POULTRY was the best amendment in terms of increasing plant growth, chlorophylls content, and soil microbial biomass and activity, but resulted in higher levels of phytoavailable Pb and Zn. SHEEP and PAPER were more effective at reducing metal CaCl2-extractability and, consequently, led to lower values of metal accumulation in plant tissues, thereby reducing the risk of metals entering into the food chain. When combined with the application of organic amendments, the metallicolous F. rubra population studied here appears an excellent candidate for aided phytostabilization. Our results indicate that the application of organic amendments is essential for the short-term recovery of highly contaminated metalliferous soils during aided phytostabilization.  相似文献   

17.
Tolerance and metal uptake are two essential characteristics required for phytoextraction of metals from contaminated soils. We compared tolerance and Cu uptake of Elsholtzia splendens (reported previously to be a Cu hyperaccumulator) with Silene vulgaris (the Imsbach population, a well-known Cu-tolerant excluder species), using 30 soils varying widely in total Cu concentration (19-8645 mg kg(-1)). We further investigated the effectiveness of different soil testing methods for predicting plant metal uptake. The results showed that both Elsholtzia splendens and Silene vulgaris were tolerant to Cu, especially Silene vulgaris. However, Elsholtzia splendens did not hyperaccumulate Cu, but behaved as a typical Cu excluder like Silene vulgaris. The concentrations of Cu in both plants correlated more closely with 1 M NH4NO3 extractable Cu, soil solution Cu, or effective Cu concentration determined using DGT, than with soil total Cu, EDTA extractable Cu or free Cu2+ activity. The relationships between soil solution properties and root Cu concentrations were further investigated using multiple regression. The results showed that increasing soil solution pH increased root Cu concentration when free Cu2+ activity was held constant, suggesting a higher phytoavailability of free Cu2+ at a higher pH. Soil solution DOC appeared to play two contrasting roles on the phytoavailability of Cu: (1) reducing Cu availability by complexing Cu; and (2) increasing Cu availability at the same level of free Cu2+ activity by providing a strong buffer for free Cu2+. The results are consistent with the intensity/capacity concept for phytoavailability of metals in soils.  相似文献   

18.
Mine tailings are one of the main environmental problems in post-mining landscapes and their removal is often complicated due to their high heavy metal content and dimensions. In this sense, using plant species for in situ stabilization may be an interesting and low cost option. Moreover, there are some plant species that have adapted to these conditions and are usually present at these contaminated sites. In this study, a mine tailing located in South-East Spain was investigated in order to establish lines for further phytostabilization research. A plot sampling design was carried out in order to characterize the soil properties. In addition, two plant species that have naturally colonized some parts of the tailing, Hyparrhenia hirta and Zygophyllum fabago, were sampled, including the analyses of their respective rhizospheric soils. The results of plot soil samples showed pH values from ultra acid to slightly alkaline. The electrical conductivity values were around 4dSm(-1) in plots with vegetation and 8dS m(-1) in the plot without vegetation. Total metal concentrations were high (4000 mg kg(-1) for Pb, 9000-15000 mg kg(-1) for Zn). DTPA- and water-extractable Zn were 5% and 3% of the total, respectively. H. hirta accumulated around 150 mg kg(-1) Pb in both shoots and roots. Zn concentration was 750 mg kg(-1) in Z. fabago shoots. DTPA-extractable Zn and Cu were positively correlated to plant uptake.  相似文献   

19.
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.  相似文献   

20.
The aim of the research reported here was to investigate the relation between heavy metal concentrations in salt marsh plants, extractability of the metals from soil and some soil characteristics. In April 1987, Spartina anglica and Aster tripolium plants and soil were collected from four salt marshes along the Dutch coast. The redox potential of the soil between the roots of the plants and at bare sites was measured. Soil samples were oven-dried and analyzed for chloride concentration, pH, fraction of soil particles smaller than 63 microm (f < 63 microm), loss on ignition (LOI) and ammonium acetate and hydrochloric acid extractable Cd, Cu and Zn concentrations. The roots and shoots of the plants were analyzed for Cd, Cu and Zn. Because drying of the soil prior to chemical analysis might have changed the chemical speciation of the metals, and therefore the outcome of the ammonium acetate extraction, a second survey was performed in October 1990. In this survey A. tripolium plants and soil were collected from two salt marshes. Fresh and matched oven-dried soil samples were analyzed for water, ammonium acetate and diethylene triaminepentaacetic acid (DTPA) extractable Cd, Cu and Zn concentrations. The soil samples were also analyzed for f < 63 microm, LOI and total (HNO(3)/HCl digestion) metal concentrations. Soil metal concentrations were correlated with LOI. Drying prior to analysis of the soil had a significant effect on the extractability of the metals with water, ammonium acetate or DTPA. Plant metal concentrations significantly correlated only with some extractable metal concentrations determined in dried soil samples. However, these correlations were not consistently better than with total metal concentrations in the soil. It was concluded that extractions of metals from soil with water, ammonium acetate or DTPA are not better predictors for metal concentrations in salt marsh plants than total metal concentrations, and that a major part of the variation in metal concentrations in the plants cannot be explained by variation in soil composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号