首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
铝箔酸洗废液中盐酸的回收和利用   总被引:5,自引:0,他引:5  
用于制造电容器的铝箔用混酸(盐酸与少量硫酸混合)进行酸洗处理,处理后所剩废液中含有大量的盐酸、少量SO2-4和Al3+,总酸度(以HCl计)约5mol/L。一家中型电子元件厂日产这种废液8t多,现全国同类工厂有30余家。目前,只有少量废酸液用于配制锅...  相似文献   

2.
张文平  王珏 《化工环保》1995,15(6):355-359
采用沉淀-电解法从COD分析废液中回收银。首先将废液中银沉淀析出,制成高浓度含银电解液,然后以不锈钢作阴、阳极,在极距10mm、电流密度0.28A/dm^2条件下进行电解,回收废液中银。该方法操作简便,银回收率为95%以上,纯度达99.5%以上。  相似文献   

3.
化验室废液的处理与某些试剂的回收   总被引:3,自引:0,他引:3  
夏芳 《化工环保》2003,23(3):180-181
分析化学试验过程中 ,会产生一些废液 ,其成分复杂 ,且有些为有毒物质 ,其中还有剧毒和致癌物质 ,如果直接排放 ,就会污染环境 ,损害人体健康。所以 ,这些废液必须经过处理 ,才能排放。对于含较纯有机溶剂的废液 (含少量试剂和被测物 ) ,应进行回收再利用。1 几种有害物质的处理方法  含酚、氰化物、汞、铬、砷等的废液 ,必须经过处理 ,达到排放标准才能排放。下面介绍的方法适用于化验室小量废液的处理。1 1 酚  对高浓度 (废液中酚质量浓度为 4 0 0mg/L以上 )的含酚废液 ,可用乙酸丁脂萃取后再重蒸馏回收。对低浓度 (废液中酚质量…  相似文献   

4.
葛坚勇 《化工环保》1989,9(2):123-124
1.概况对离子交换树脂生产过程中产生的溶剂母液,我们从离子交换树脂的生产原理着手,根据该溶剂母液的性质,作了一些研究,提出了简便可行的回收方法,从根本上解决了树脂生产厂向外排污的问题,获得了  相似文献   

5.
以Na2S2O4为还原剂,采用化学还原法回收某电镀厂含银电镀废液中的银。实验结果表明,在n(Na2S2O4)∶n(Ag+)=2.5、反应温度35℃、废水pH7.5、搅拌速率300r/min的条件下,Ag+回收率达到99.92%。对回收的银粉进行X射线衍射和扫描电子显微镜分析,分析结果表明回收的银粉纯度较高,成球形。  相似文献   

6.
7.
沉淀-电解法回收COD分析废液中的银   总被引:4,自引:0,他引:4  
采用沉淀-电解法从COD分析废液中回收银。首先将废液中银沉淀析出,制成高浓度含银电解液,然后以不锈钢作阴、阳极,在极距10mm、电流密度0.28A/dm ̄2条件下进行电解,回收废液中银。该方法操作简便,银回收率为95%以上,纯度达99.5%以上。  相似文献   

8.
从己二胺生产废液中回收环己亚胺   总被引:1,自引:0,他引:1  
刘淑枝  陈彦 《化工环保》1989,9(2):103-106
本文主要是从生产己二胺的废液中,用溶剂萃取及成盐的方法,回收有特殊用途的化工原料环己亚胺。小试已通过辽化公司鉴定,为中试提供了可靠的数据。  相似文献   

9.
采用NaBH4作为还原剂回收电镀废液中的铜。正交实验结果表明,各因素对剩余铜离子质量浓度的影响的显著性顺序为n(NaBH4)∶n(CuSO4)反应时间反应温度。最佳实验条件为:n(NaBH4)∶n(CuSO4)=1.50,反应温度30℃,反应时间25min。经该工艺可获得平均粒径为33nm的近球形立方晶系纳米铜粉,处理后废液中铜离子质量浓度低至0.2mg/L。在铜粉制备过程中加入非离子型表面活性剂可有效阻止晶粒长大,并提高其分散性能,使产物粒径均匀。采用苯骈三氮唑处理后的铜粉抗氧化能力明显提高。  相似文献   

10.
采用纯物理法,通过固液分离、脱色、精滤、真空蒸馏、指标调节等工艺技术,对太阳能晶硅片切割废液进行资源化回收处理,切割废液回收得到的产品各项性能指标满足使用要求,可以再次作为太阳能晶硅片切割液使用,实现切割废液资源化循环利用,以及社会、环境和经济效益的有机统一和协调发展。  相似文献   

11.
硫酸法生产钛白的三废治理   总被引:13,自引:0,他引:13  
介绍了硫酸法生产B-10涂料钛白粉生产过程中产生的三废的回收利用和处理措施。  相似文献   

12.
对萘系高效减水剂中硫酸钠的分离提出了一种用有机醇作为促析剂的分离工艺,在较高温度和较高的水剂总浓度下,按水剂质量的30%加入促析剂,可使粉剂中硫酸钠的质量分数降至3%以下,促析剂可回收利用。该工艺无三废排放,工艺简单,可望取代传统的脱硫酸钙法。  相似文献   

13.
火电厂SO2污染排放控制方法探讨   总被引:4,自引:0,他引:4  
从国家对火力发电锅炉SO2污染排放标准和SO2排放总量控制的角度入手,分析了我国目前可选择的SO2污染排放控制方法;指出循环流化床锅炉、烟气湿法和喷雾干燥法为当前我国火电厂应采取的脱硫控制方法。  相似文献   

14.
Sorbents synthesized from various types of ash (coal fly ash, coal bottom ash, oil palm ash, and incinerator ash) for flue gas desulfurization were investigated. The sorbents were prepared by mixing the ashes with calcium oxide and calcium sulfate using the water hydration method. The effects of various sorbent preparation variables, such as the hydration period, the ratio of calcium oxide to ash, and the amount of calcium sulfate, on the Brunauer-Emmett-Teller (BET)-specific surface area of the resulting sorbent were studied using a two-level full factorial design. The surface area of the sorbents obtained range from 15.4 to 122.1m2/g. Regression models were developed to correlate the significant variables to the surface area of the sorbents. An analysis of variance (ANOVA) showed that the model was significant at a confidence level of 95%. It was found that apart from all the individual variables studied, interactions between variables also exerted a significant influence on the surface area of the sorbent. From the activity test results, it was found that sorbents prepared from coal fly ash and oil palm ash have the highest SO2 absorption capacity. Scanning electron microscope (SEM) analysis showed that the sorbent was composed of a compound with a high structural porosity, while an X-ray diffraction spectrum showed that calcium aluminum silicate hydrate compounds are the main products of the hydration reaction.  相似文献   

15.
火电厂石灰石湿法烟气脱硫废水处理方法   总被引:20,自引:1,他引:20  
阐述了石灰石湿法烟气脱硫(FGD)废水的水质特征,介绍了国内外普遍应用的化学沉淀去除脱硫废水中重金属、悬浮物等物质的工艺特点及其不足,并着重介绍了最新发展的流化床法、沉淀一微滤法等FCD废水处理新型工艺。  相似文献   

16.
An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the ‘fuel from waste’ so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing ‘fuel from waste’ market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the ‘fuel from waste’ in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.  相似文献   

17.
Micrometeorological measurements of methane (CH4) and nitrous oxide (N2O) emissions were made at the decommissioned Park Road Landfill in Grimsby, Ontario, Canada between June and August 2002. The influence of precipitation, air temperature, wind speed and barometric pressure on the temporal variability of landfill biogas emissions was assessed. Gas flux measurements were obtained using a micrometeorological mass balance measurement technique [integrated horizontal flux (IHF)] in conjunction with two tunable diode laser trace gas analyser (TDLTGA) systems. This method allows for continuous, non-intrusive measurements of gas flux at high temporal resolution. Mean fluxes of N2O were negligible over the duration of the study (-0.23 to 0.02 microg m(-2) s(-1)). In contrast, mean emissions of CH4 were much greater (80.4 to 450.8 microg m(-2) s(-1)) and varied both spatially and temporally. Spatial variations in CH4 fluxes were observed between grass kill areas (biogas 'hot spots') and the densely grass-covered areas of the landfill. Temporal variations in CH4 fluxes were also observed, due at least in part to barometric pressure, wind speed and precipitation effects.  相似文献   

18.
A solution containing 35SO4 2- and 3H2O was applied to four plots (5 × 5 m) in a boreal coniferous forest in the Laflamme Lake watershed, Québec, under two contrasting conditions: in summer (plots 1 and 2), and on the snowpack before snowmelt (plots 3 and 4). The transit of both these tracers in the soil solution was then followed through a network of soil lysimeters located at different depths. Four months after the summer application, 3H2O had infiltrated the whole soil profile at plot 1, while 35SO4 2- was only observed in the LFH and Bhf horizons. A 35SO4 2- budget calculated from mid-August to November indicated that 89 and 10.6% of the added 35SO4 2- was retained within the LFH and the Bhf layers, respectively. Fifteen months later, the added 35SO4 2- was distributed in the following proportions within the soil horizons: LFH (73.7%), Bhf (11.8%) and Bf (12.8%), for a total retention rate of 98.3%. The superficial penetration of 3H2O at plot 2 was indicative of a major lateral water movement that prevented the calculation of a 35SO4 2- budget. This situation also was observed at plot 4 during snowmelt. At plot 3, 3H2O moved freely through the soil profile and a significant fraction of the added 35SO4 2- reached the B horizons, where it was presumably adsorbed on aluminum (Al) and ferric (Fe) oxides. The 35SO4 2- budget for plot 3 from March to November indicated that 87% of the added 35SO4 2- was retained within the soil profile, with most being retained in the B horizons (LFH = 33.1%, Bhf = 33.1%, Bf = 20.8%). The contrasting retention patterns of 35SO4 2- within the soil profile following the summer addition and snowmelt likely was caused by the contrastingsoil temperatures and soil solution residence times within the differentsoil layers. The persistence of 35SO4 2- in the soil solution of the entire profile long after the initial tracer infiltration, and the relative temporal stability of specific activity of SO4 2-, point to the establishment of an isotopic equilibrium between the added 35SO4 and the active S-containing reservoirs within a given soil horizon. Overall, the results clearly illustrate the very strong potential for 35SO4 2- retention and recycling in forest soils.  相似文献   

19.
Journal of Material Cycles and Waste Management - Portlandite (Ca(OH)2) preparation from phosphogypsum waste (PGW) was evaluated in numerous works; however, the use of this compound is not applied...  相似文献   

20.
Following the Kyoto protocol with respect to reducing emissions of greenhouse gases emissions, and EU energy policy and sustainability in waste management, there has been an increased interest in the reduction of emissions from waste disposal operations. From the point of view of nitrous oxide (N2O) emissions, waste incineration and waste co-combustion are very acceptable methods for waste disposal. In order to achieve very low N2O emissions from waste incineration, particularly for waste with higher nitrogen content (e.g. sewage sludge), two factors are important: temperature of incineration over 900 degrees C and avoiding the selective non-catalytic reduction (SNCR) de-NO(X) method based on urea or ammonia treatments. The more modern selective catalytic reduction (SCR) systems for de-NO(X) give rise to negligible sources of N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号