首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
ABSTRACT: The snowmelt-runoff model (SRM) was used to produce accurate simulations of streamfiow during the snowmelt period (April-September) for ten years on the Rio Grande Basin (3419 km2) near Del Norte, Colorado, U.S.A. In order to use SRM in the forecast situation, it was necessary to develop a family of snow cover depletion curves for each elevation zone based on accumulated snow water equivalent on April 1. Selection of an appropriate curve for a particular year from snow course measurements allows input of the daily snow cover extent to SRM for forecast purposes. Data from three years (1980, 1981, and 1985) were used as a quasi-forecast test of the procedure. In these years forecasted snow cover extent data were input to SRM, but observed temperature and precipitation data were used. The resulting six-month hydrographs were very similar to the hydrographs in the ten simulation years previously tested based on comparisons of performance evaluation criteria. Based on this result, the Soil Conservation Service (SCS) requested SRM forecasts for 1987 on the Rio Grande. Using the same procedure but with SCS estimated temperature and precipi-tation data, SRM produced a forecast hydrograph that had a r2= 0.82 and difference in seasonal volume of 4.4 percent. To approximate actual operational conditions, SRM computed daily flows were updated every seven days with measured flows. The resulting forecast hydrograph had a R2= 0.90 and a difference in volume of 3.5 percent. The method developed needs to be refined and tested on additional years and basins, but the approach appears to be applicable to operational runoff forecasting using remote sensing data.  相似文献   

2.
ABSTRACT: Snow course surveys in late winter provide stream‐flow forecasters with their best information for making water supply and flood forecasts for the subsequent spring and summer runoff period in mountainous regions of western North America. Snow survey data analyses are generally based on a 30‐year “normal” period. It is well documented that forest cover changes over time will affect snow accumulation on the ground within forests. This paper seeks to determine if forest cover changes over decades at long term snow courses decrease measured peak snow water equivalent (SWE) enough to affect runoff prediction. Annual peak SWE records were analyzed at four snow courses in two different forest types having at least 25 years of snowpack data to detect any decreases in SWE due to forest growth. No statistically significant decreases in annual peak SWE over time were found at any of these four snow courses. The wide range of annual winter precipitation and correspondingly highly variable peak snowpack accumulation, as well as many other weather and site variables, masked any minor trends in the data.  相似文献   

3.
Abstract: Official seasonal water supply outlooks for the western United States are typically produced once per month from January through June. The Natural Resources Conservation Service has developed a new outlook product that allows the automated production and delivery of this type of forecast year‐round and with a daily update frequency. Daily snow water equivalent and water year‐to‐date precipitation data from multiple SNOTEL stations are combined using a statistical forecasting technique (“Z‐Score Regression”) to predict seasonal streamflow volume. The skill of these forecasts vs. lead‐time is comparable to the official published outlooks. The new product matches the intra‐monthly trends in the official forecasts until the target period is partly in the past, when the official forecasts begin to use information about observed streamflows to date. Geographically, the patterns of skill also match the official outlooks, with highest skill in Idaho and southern Colorado and lowest skill in the Colorado Front Range, eastern New Mexico, and eastern Montana. The direct and frequent delivery of objective guidance to users is a significant new development in the operational hydrologic seasonal forecasting community.  相似文献   

4.
Deep learning (DL) models are increasingly used to make accurate hindcasts of management-relevant variables, but they are less commonly used in forecasting applications. Data assimilation (DA) can be used for forecasts to leverage real-time observations, where the difference between model predictions and observations today is used to adjust the model to make better predictions tomorrow. In this use case, we developed a process-guided DL and DA approach to make 7-day probabilistic forecasts of daily maximum water temperature in the Delaware River Basin in support of water management decisions. Our modeling system produced forecasts of daily maximum water temperature with an average root mean squared error (RMSE) from 1.1 to 1.4°C for 1-day-ahead and 1.4 to 1.9°C for 7-day-ahead forecasts across all sites. The DA algorithm marginally improved forecast performance when compared with forecasts produced using the process-guided DL model alone (0%–14% lower RMSE with the DA algorithm). Across all sites and lead times, 65%–82% of observations were within 90% forecast confidence intervals, which allowed managers to anticipate probability of exceedances of ecologically relevant thresholds and aid in decisions about releasing reservoir water downstream. The flexibility of DL models shows promise for forecasting other important environmental variables and aid in decision-making.  相似文献   

5.
ABSTRACT: The need to monitor and forecast water resources accurately, particularly in the western United States, is becoming increasingly critical as the demand for water continues to escalate. Consequently, the National Weather Service (NWS) has developed a geostatistical model that is used to obtain areal estimates of snow water equivalent (the thtal water content in all phases of the snowpack), a major source of water in the West. The areal snow water equivalent estimates are used to update the hydrologic simulation models maintained by the NWS and designed to produce extended streamflow forecasts for river systems throughout the United States. An alternative geostatistical technique has been proposed to estimate snow water equivalent. In this research, we describe the two methodologies and compare the accuracy of the estimates produced by each technique. We illustrate their application and compare their estimation accuracy using snow data collected in the North Fork Clearwater River basin in Idaho.  相似文献   

6.
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks.  相似文献   

7.
ABSTRACT: A strategy is developed for making seasonal water supply forecasts in real time. It links the traditional regression based forecasting techniques to real-time data acquired by systems such as the Soil Conservation Service SNOTEL and the U.S. Bureau of Reclamation Hydromet networks. The concept is based on interpolating between the forecast values obtained by using real-time data in the forecast equations that bracket the real time. Different interpolation procedures were examined and the procedure for calculating confidence intervals about the forecast estimates is developed. The entire conceptual procedure is demonstrated using data from the Reynolds Creek, Idaho, experimental watershed maintained by the USDA-ARS Northwest Watershed Research Center in Boise, Idaho.  相似文献   

8.
ABSTRACT: The objective is to develop techniques to evaluate how changes in basic data networks can improve accuracy of water supply forecasts for mountainous areas. The approach used was to first quantify how additional data would improve our knowledge of winter precipitation, and second to estimate how this knowledge translates, quantitatively, into improvement in forecast accuracy. A software system called DATANET was developed to analyze each specific gage network alternative. This system sets up a fine mesh of grid points over the basin. The long-term winter mean precipitation at each grid point is estimated using a simple atmospheric model of the orographic precipitation process. The mean runoff at each grid point is computed from the long-term mean precipitation estimate. The basic runoff model is calibrated to produce the observed long-term runoff. The error analysis is accomplished by comparing the error in forecasts based on the best possible estimate of precipitation using all available data with the error in the forecasts based on the best possible estimate of winter precipitation using only the gaged data. Different data network configurations of gage sites can be compared in terms of forecast errors.  相似文献   

9.
The Sierra Nevada produces over 50 percent of California's water. Improvement of water yields from the Sierra Nevada through watershed management has long been suggested as a means of augmenting the state's water supply. Vegetation and snowpack management can increase runoff from small watersheds by reducing losses due to evapotranspiration, snow interception by canopy, and snow evaporation. Small clearcuts or group selection cuts creating openings less than half a hectare, with the narrow dimension from south to north, appear to be ideal for both increasing and delaying water delivery in the red fir-lodgepole pine and mixed-conifer types of the Sierra west slope. Such openings can have up to 40 percent more snow-water equivalent than does uncut forest. However, the water yield increase drops to 1/2-2 percent of current yield for an entire management unit, due to the small number of openings that can be cut at one time, physical and management constraints, and multiple use/sustained yield guidelines. As a rough forecast, water production from National Forest land in the Sierra Nevada can probably be increased by about 1 percent (0.6 cm) under intensive forest watershed management. Given the state of reservoir storage and water use in California, delaying streamflow is perhaps the greatest contribution watershed management can make to meeting future water demands.  相似文献   

10.
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments.  相似文献   

11.
Miller, W. Paul and Thomas C. Piechota, 2011. Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow. Journal of the American Water Resources Association (JAWRA) 47(6):1197–1210. DOI: 10.1111/j.1752‐1688.2011.00565.x Abstract: Water resource managers in the Western United States (U.S.) are currently faced with the challenge of adapting to unprecedented drought and uncertain impacts of climate change. Recent research has indicated increasing regional temperature and changes to precipitation and streamflow characteristics throughout the Western U.S. As such, there is increased uncertainty in hydroclimatological forecasts, which impact reservoir operations and water availability throughout the Western U.S., particularly in the Colorado River Basin. Previous research by the authors hypothesized a change in the character of precipitation (i.e., the frequency and amount of rainfall and snowfall events) throughout the Colorado River Basin. In the current study, 398 snowpack telemetry stations were investigated for trends in cumulative precipitation, snow water equivalent, and precipitation events. Observations of snow water equivalent characteristics were compared to observations in streamflow characteristics. Results indicate that the timing of the last day of the snow season corresponds well to the volume of runoff observed over the traditional peak flow season (April through July); conversely, the timing of the first day of the snow season does not correspond well to the volume of runoff observed over the peak flow season. This is significant to water resource managers and river forecasters, as snowpack characteristics may be indicative of a productive or unproductive runoff season.  相似文献   

12.
ABSTRACT: Water scarcity in the Sevier River Basin in south‐central Utah has led water managers to seek advanced techniques for identifying optimal forecasting and management measures. To more efficiently use the limited quantity of water in the basin, better methods for control and forecasting are imperative. Basin scale management requires advanced forecasts of the availability of water. Information about long term water availability is important for decision making in terms of how much land to plant and what crops to grow; advanced daily predictions of streamflows and hydraulic characteristics of irrigation canals are of importance for managing water delivery and reservoir releases; and hourly forecasts of flows in tributary streams to account for diurnal fluctuations are vital to more precisely meet the day‐to‐day expectations of downstream farmers. A priori streamflow information and exogenous climate data have been used to predict future streamflows and required reservoir releases at different timescales. Data on snow water equivalent, sea surface temperatures, temperature, total solar radiation, and precipitation are fused by applying artificial neural networks to enhance long term and real time basin scale water management information. This approach has not previously been used in water resources management at the basin‐scale and could be valuable to water users in semi‐arid areas to more efficiently utilize and manage scarce water resources.  相似文献   

13.
Abstract: Mid‐range streamflow predictions are extremely important for managing water resources. The ability to provide mid‐range (three to six months) streamflow forecasts enables considerable improvements in water resources system operations. The skill and economic value of such forecasts are of great interest. In this research, output from a general circulation model (GCM) is used to generate hydrologic input for mid‐range streamflow forecasts. Statistical procedures including: (1) transformation, (2) correction, (3) observation of ensemble average, (4) improvement of forecast, and (5) forecast skill test are conducted to minimize the error associated with different spatial resolution between the large‐scale GCM and the finer‐scale hydrologic model and to improve forecast skills. The accuracy of a streamflow forecast generated using a hydrologic model forced with GCM output for the basin was evaluated by forecast skill scores associated with the set of streamflow forecast values in a categorical forecast. Despite the generally low forecast skill score exhibited by the climate forecasting approach, precipitation forecast skill clearly improves when a conditional forecast is performed during the East Asia summer monsoon, June through August.  相似文献   

14.
The Snow Survey and Water Supply Forecasting (SSWSF) Program and the Soil Climate Analysis Network (SCAN) of the United States Department of Agriculture's Natural Resources Conservation Service (NRCS) generate key observational and predictive information for water managers. Examples include mountain climate and snow monitoring through manual snow surveys and the SNOw TELemetry (SNOTEL) and SNOtel LITE networks, in situ soil moisture data acquisition through the SCAN and SNOTEL networks, and water supply forecasting using river runoff prediction models. The SSWSF Program has advanced continuously over the decades and is a major source of valuable water management information across the western United States, and the SCAN network supports agricultural and other water users nationwide. Product users and their management goals are diverse, and use-cases range from guiding crop selection to seasonal flood risk assessment, drought monitoring and prediction, avalanche and fire prediction, hydropower optimization, tracking climate variability and change, environmental management, satisfying international treaty and domestic legal requirements, and more. Priorities going forward are to continue innovating to enhance the accuracy and completeness of the observational and model-generated data products these programs deliver, including expanded synergies with the remote sensing community and uptake of artificial intelligence while maintaining long-term operational reliability and consistency at scale.  相似文献   

15.
ABSTRACT: Several federal and state water resources agencies and NASA have recently completed an Applications Systems Verification and Transfer (ASVT) project on the operational applications of satellite snow cover observations. When satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. Three years of testing in California resulted in reduction of seasonal stream flow forecast error was evident. Three years of testing in California resulted in reduction of seasonal stream flow forecast error from 15 percent to 10 percent on three study basins; and modeling studies on the Boise River basin in Idaho indicated that satellite snow cover could be used to reduce short term forecast error by up to 9.6 percent (5 day forecast). Potential benefits from improved satellite snow cover based predictions across the 11 western states total 10 million dollars for hydropower and 28 million dollars for irrigation annually. The truly operational application of the new technology in the West, however, will only be possible when the turnaround time for all data is reduced to 72 hours, and the water management agencies can be assured of a continuing supply of operational snow cover data from space.  相似文献   

16.
ABSTRACT: Forecasts of 1980 river basin water use presented in the reports of the 1960 Senate Select Committee on National Water Resources and in the Water Resources Council's First National Water Assessment of 1968 were compared to estimates of actual use in 1980 to assess the accuracy of efforts to forecast future water use. Results show that the majority of the forecasts were substantially in error. In general, the First National Assessment forecasts erred by a smaller margin, but tended to repeat the regional patterns of overestimation (underestimation) exhibited in the Senate Select Committee forecasts. Moreover, forecasts of the two groups that came within 20 percent of the 1980 withdrawals, in general were accurate, not because of superior prediction, but because of offsetting errors in forecast components. This performance leads us to conclude that water use forecasts, regardless of the time-frame or the forecast method employed, are likely to always be highly inaccurate. Accordingly, if such forecasting efforts are to be of value in contemporary water resources planning, forecasters should direct their attention toward methods which will illuminate the determinants of the demand for water.  相似文献   

17.
ABSTRACT: Federal agencies in the U.S. and Canada continuously examine methods to improve understanding and forecasting of Great Lakes water level dynamics in an effort to reduce the negative impacts of fluctuating levels incurred by interests using the lakes. The short term, seasonal and long term water level dynamics of lakes Erie and Ontario are discussed. Multiplicative, seasonal ARIMA models are developed for lakes Erie and Ontario using standardized, monthly mean level data for the period 1900 to 1986. The most appropriate model identified for each lake had the general form: (1 0 1)(0 1 1)12. The data for each lake were subdivided by time periods (1900 to 1942;1 943 to 1986) and the model coefficients estimated for the subdivided data were similar, indicating general model stability for the entire period of record. The models estimated for the full data sets were used to forecast levels 1,2,3, and 6 months ahead for a period of high levels (1984 to 1986). The average absolute forecast error for Lake Erie was 0.049m, 0.076m, 0.091 m and 0.128m for the 1, 2,3, and 6 month forecasts, respectively. The average absolute forecast error for Lake Ontario was 0.058m, 0.095m, 0.120m and 0.136m for the 1,2,3, and 6 month forecasts, respectively. The ARIMA models provide additional information on water level time series structure and dynamics. The models also could be coordinated with current forecasting methods, possibly improving forecasting accuracy.  相似文献   

18.
ABSTRACT: A cascade model for forecasting municipal water use one week or one month ahead, conditioned on rainfall estimates, is presented and evaluated. The model comprises four components: long term trend, seasonal cycle, autocorrelation and correlation with rainfall. The increased forecast accuracy obtained by the addition of each component is evaluated. The City of Deerfield Beach, Florida, is used as the application example with the calibration period from 1976–1980 and the forecast period the drought year of 1981. Forecast accuracy is measured by the average absolute relative error (AARE, the average absolute value of the difference between actual and forecasted use, divided by the actual use). A benchmark forecast is calculated by assuming that water use for a given week or month in 1981 is the same as the average for the corresponding period from 1976 to 1980. This method produces an AARE of 14.6 percent for one step ahead forecasts of monthly data and 15.8 percent for weekly data. A cascade model using trend, seasonality and autocorrelation produces forecasts with AARE of about 12 percent for both monthly and weekly data while adding a linear relationship of water use and rainfall reduces the AARE to 8 percent in both cases if it is assumed that rainfall is known during the forecast period. Simple rainfall predictions do not increase the forecast accuracy for water use so the major utility of relating water use and rainfall lies in forecasting various possible water use sequences conditioned on sequences of historical rainfall data.  相似文献   

19.
ABSTRACT: This research investigates the benefits of forecasting in water supply systems. Questions relating operational losses to forecast period and accuracy are addressed. Some simple available forecasting techniques are assessed for their accuracy and applicability. These issues are addressed through the use of a simulation model of the Cedar and South Fork Tolt Rivers, where the system is modeled as a single purpose reservoir supplying municipal and industrial water to the Seattle metropolitan area. The following conclusions were made for this system: (1) reservoir operation deteriorates markedly with the loss of forecast accuracy; (2) the optimal length of forecasting period is five months; (3) reservoir operation may be improved by as much as 88 percent if perfect predictive abilities are available; (4) the mean of the historic data is not recommended to predict future flows because Markov methods are always superior; and (5) lag-one autoregressive Markov schemes exhibit about a 9 percent improvement in operation over no forecasting.  相似文献   

20.
Harshburger, Brian J., Karen S. Humes, Von P. Walden, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2010. Evaluation of Short-to-Medium Range Streamflow Forecasts Obtained Using an Enhanced Version of SRM. Journal of the American Water Resources Association (JAWRA) 46(3):603-617. DOI: 10.1111/j.1752-1688.2010.00437.x Abstract: As demand for water continues to escalate in the western United States, so does the need for accurate streamflow forecasts. Here, we describe a methodology for generating short-to-medium range (1 to 15 days) streamflow forecasts using an enhanced version of the Snowmelt Runoff Model (SRM), snow-covered area data derived from MODIS products, data from Snow Telemetry stations, and meteorological forecasts. The methodology was tested on three mid-elevation, snowmelt-dominated basins ranging in size from 1,600 to 3,500 km2. To optimize the model performance and aid in its operational implementation, two enhancements have been made to SRM: (1) the use of an antecedent temperature index method to track snowpack cold content, and (2) the use of both maximum and minimum critical temperatures to partition precipitation into rain, snow, or a mixture of rain and snow. The comparison of retrospective model simulations with observed streamflow shows that the enhancements significantly improve the model performance. Streamflow forecasts generated using the enhanced version of the model compare well with the observed streamflow for the earlier leadtimes; forecast performance diminishes with leadtime due to errors in the meteorological forecasts. The three basins modeled in this research are typical of many mid-elevation basins throughout the American West, thus there is potential for this methodology to be applied successfully to other mountainous basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号