首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

2.
ABSTRACT: Water quality controls of storm water runoff and infiltration should be a major part of a nonpoint source control program. Although surface runoff and ground water controls are often approached separately, coordination between the two is essential. For practical reasons, a rather simplified technology-based approach appears to be desirable. Areas affected vary greatly as to their sensitivity to pollution; and the various classes of pollutant source vary greatly as to their potential harmfulness. In effect, a matrix approach appears best, in which both vulnerability of the area and harmfulness of the pollutant source would have weight in determining which level of best management practices (BMP) would be appropriate, whether standard, special, or complete prohibition of the type facility under given circumstances.  相似文献   

3.
Storm water management contributes to flood hazard mitigation; but new approaches now being developed consider also the reduction in particulate pollution and stream erosion. Such approaches involve retardation of storm runoff, or detention programs of some kind, and detention basins are usually required if large storms are to be controlled. The usual concept is that future storms occurring after development should have no more adverse effect than similar storms would have had before development; but a number of different criteria are being used. If control of storms of different sizes is required, only a small amount of additional capacity is required to obtain retention of particulate pollution in the same basin. In at least three different parts of the country, such dual purpose detention basins are being required of developers. In such programs the developers bear the cost, the governmental contributions are not involved.  相似文献   

4.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

5.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

6.
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms.  相似文献   

7.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

8.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

9.
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed.  相似文献   

10.
. Water Reservoir Systems were investigated for urban areas as an alternative or complement to storm water drainage systems for flood control which could provide benefits in water conservation and reduce drainage system costs. The study consisted of: (1) gathering of engineering data on the topographical, hydrological, and precipitation characteristics of the area and urban development and economic statistics  相似文献   

11.
ABSTRACT. The water resources manager, concerned with providing for citizen needs for water in all its varied aspects, is obliged to consider the public interest in his decision making. But the public interest, although inferring the superiority of public over purely private interests, is more of a concept of political ethics than an operational objective. Recent attacks on water resources developments place in question just how responsive the water resources manager has been to the public at large during the planning process. The recent broadening of planning objectives beyond economic efficiency to include greater attention to social goals is an encouraging development. Efforts should be expanded toward greater citizen participation and more attention should be given to sampling surveys to determine citizen attitudes on water resources proposals. In the last analysis, the decision-making process must combine the expertise of the water resources manager and the participation of the people through the political process.  相似文献   

12.
ABSTRACT: The Chicago Metropolitan Floodwater Management Plan is a cooperative planning program under Public Law 566 of the 83rd Congress (The Watershed Protection and Flood Prevention Act). The planning effort was jointly sponsored by the U.S. Department of Agriculture, Soil Conservation Service, and the Metropolitan Sanitary District of Greater Chicago. The project is unique in that it studies a 1260 square mile (3266 sq. kilometer) watershed, which is approximately 35 percent urbanized and contains approximately 7.5 million people. At present, approximately 4.4 percent or 330,600 people live in a floodplain. It is presently estimated that 80,000 acres (32,000 ha.) of the study area are subject to flooding with a current average annual damage estimated at approximately $10 million. The Plan which has been developed to reduce or eliminate these damages is divided into six separate watershed plans, and has been developed through extensive use of local citizen watershed steering committees. The paper discusses the planning process, public participation and implementation both at an overall river basin level and watershed case study level.  相似文献   

13.
ABSTRACT: Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of these water problems, but it can improve the efficiency of water allocation. When given adequate responsibility and authority, water user associations have effectively taken over water management activities at a savings to tax payers. Moreover, water markets add the potential benefit of improving water efficiency within a sector as well as providing a mechanism for reallocating water among sectors. The key question involves developing innovative mechanisms for reducing the transaction costs of organizing water users and of making water trades. Water rights need to be established which are recorded, tradable, enforceable, and separate from land if markets are to operate effectively. Also, institutions are needed that effectively resolve conflicts over water rights, including third party impacts and water quality concerns.  相似文献   

14.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

15.
ABSTRACT: There is a lamentable absence of comprehensive planning in the current cursade to improve water quality. A serious shortcoming is the lack of evaluation of the effects of waste water treatment upon environmental quality. At some point in time the public may ask what they have obtained for their money. The nature of pollution in a river basin demands a coordinated attack against it. Engineering and economic criteria suggest that a properly empowered river basin authority would be the logical organization to plan and operate a water quality management system. Several forms of such authorities have operated effectively and efficiently for many years in the United States and other industrialized countries. Examples of successful river basin authorities and their advantages and methods of operation are discussed.  相似文献   

16.
ABSTRACT: Municipalities will be implementing structural best management practices at increasing rates in their effort to comply with Phase II of the National Pollutant Discharge Elimination System (NPDES). However, there is evidence that structural best management practices (BMPs) by themselves may be insufficient to attain desired water quality standards. This paper reports on an analysis of the median removal efficiencies of structural BMPs and compares them to removal efficiencies estimated as being necessary to attain water quality standards in the Rouge River in Detroit, Michigan. Eight water quality parameters are reviewed using data collected from 1994 to 1999 in the Rouge River. Currently, five of the eight parameters in the Rouge River including bacteria, biochemical oxygen demand, and total suspended solids (TSS) exceed the required water quality standards. The reported analysis of structural BMP efficiencies reveals that structural BMPs appear capable of reducing only some of the pollutants of concern to acceptable levels.  相似文献   

17.
ABSTRACT: A public attitude survey was developed by a citizen committee and mailed to all residences (14,747) in the planned, suburban community of Reston, Virginia, which is responsible for maintaining four small, recreational impoundments. Over 18 percent of survey forms were returned, and characteristics of the survey sample suggest that the suite of respondents was representative of the Reston community as a whole. Of those respondents indicating a preferred lake use, 48 percent chose walking or looking as most important; boating as second at 27 percent; and fishing was third, favored by only 8 percent. Citizens feel strongly (94 percent) that the lakes are valuable community assets. Appearance was the characteristic most valued by 62 percent of respondents, and 58 percent considered degradation of water quality either the first or second most important ecological issue affecting local lakes. These findings provide a decisive public mandate for lake management activities related to visual quality. In response to this survey, the Reston Association, a homeowners' organization responsible for the lakes, increased public access of visual enjoyment, intensified litter control, expanded activities in public education on lake management and ecology, and continued a long-term program of water quality monitoring.  相似文献   

18.
ABSTRACT. High percentage of imperviousness in the city is the source of storm runoff. Roof area contributes significantly to the imperviousness. An attempt to make use of roofs as urban flood control device and water conservation measure is advocated. Two different schemes, one for built-up industrial-commercial area, the other for residential area, are suggested. The former utilizes the roof as detention reservoir for flood control, the latter employs recharge pit to convert runoff into ground water resource. The proposed schemes are not only hydrologically, hydraulically and structurally sound but also economically feasible. It is worth considering in the future planning of urban renewal and urban development.  相似文献   

19.
ABSTRACT: Proper economic evaluation of alternative plans will maximize the utility achieved from the resources available for water resource management. A knowledge of the frequency of occurrence of the events under study is necessary to fully utilize the advantages of economic evaluation in planning. Frequency information is widely used in flood control and water supply, but relatively unknown in water quality planning. A continuous, dynamic hydrologic and water quality model is presented to develop frequency curves for various water quality criteria. Results from the Denver Regional Water Quality Management Study are discussed as an example of the use of frequency analysis for economic evaluation of water quality management.  相似文献   

20.
ABSTRACT: The Louisiana Environmental Management System (LEMS) is a data processing program developed to aid the Louisiana Joint Legislative Committee on Environmental Quality in decisions leading to resources legislation. Serving as a central data collection and retrieval point for various agencies, the LEMS will maintain assembled information on the location of monitoring stations and coordinate the files of user agencies with data on: land use; air and water quality; meteorological, climatological, and hydrological phenomena; vegetation; fish and wildlife conservation; population; and economics. This data is geographically stored in relation to the state plane coordinate system. For decision making, all pertinent hydrologic, topographic, engineering, cadastral, and other information from separate sources can be automatically mapped as a combined overlay to one of three chosen scales. Land-use patterns are the input data for iterative analyses of present conditions and simulated future human activities for assessing the environmental impact of proposed multiple-purpose water resource developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号