首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   

2.
ABSTRACT: This study evaluated the impact of selected soil surface characteristics on infiltration rates and sediment production from interrill erosion from loam soil. Treatments were two different grass species (crested wheatgrass and intermediate wheatgrass), three levels of grass cover (30, 50, and 80 percent), four levels of rock cover (5, 10, 15, and 20 percent), and six levels of simulated trampling (10 to 60 percent of the respective plot area by 10 percent increments). Results indicated that plots with sod forming grass infiltrated only slightly more water than plots with bunchgrass, though the differences were significant. Trampling reduced infiltration rates significantly. On uncompacted soil, infiltration rates increased as percentage of rock cover increased. Trampling gradually destroyed this relationship however. Rock cover did not significantly affect sediment production. The tradeoff between vegetal cover and rock cover was affected by simulated trampling. Once trampling disturbance reached 20 percent, no relationship between vegetal cover and rock cover existed. Trampling was the most important factor influencing infiltration rates, explaining 35 to 48 percent of the variation in infiltration rates. The most important factor influencing sediment production was grass cover, which explained 40 to 62 percent of the variations associated with sediment yield at various trampling percentages. Results strongly suggest that, for slopes and soils as used here, adequate watershed protection may be obtained by maintaining 50 percent protective ground cover. Additional validation studies are recommended.  相似文献   

3.
ABSTRACI:. Slash burning is a common site preparation technique used after timber harvest throughout the Southeastern United States. Little quantitative information exists on the hydrologic response to burn severity. This study compared the effects of low-severity and high-severity burns on runoff and sediment yields during rainfall simulation and during natural rainfall in the Southern Appalachian Mountains. Fire severity was largely determined by moisture conditions of the forest floor prior to ignition. Runoff and sediment yield variability was high between plots within the same treatment area due to differences in forest floor characteristics and infiltration rates. Conditions of high-severity resulted when burning was conducted with relatively dry fuels. Sediment yields were 40-times greater for the high-severity treatment areas than the low-severity treatment areas.  相似文献   

4.
ABSTRACT: As an alternative to the conventional single-peak design storms commonly used in hydrologic practice, a large number of Southeastern Pennsylvania storm events were selected from hourly U.S. National Oceanographic and Atmospheric Administration (NOAA) records, and their temporal distributions were analyzed. From these recorded events, design storms of a typical distribution were developed for storm durations between 6 and 18 hours. All of these generated design storms have two or more peaks. The conventional single peak as well as the “typical” multi-peak storms were then applied to a simulated watershed. It was found that the multi-peak storms consistently produced more dispersed hydrographs with lower runoff peaks than the conventional single peak storms.  相似文献   

5.
ABSTRACT: Few studies have been conducted to explore the effects of initial abstraction on estimated direct runoff despite the widespread use of the curve number (CN) method in many hydrologic models to estimate direct runoff. In this study, use of a 5 percent ratio of initial abstraction (Ia) to storage (S) to estimate daily direct runoff with modified CN values for a 5 percent Ia/S value was investigated using the Long‐Term Hydrologic Impact Assessment (L‐THIA) geographic information system (GIS). In addition, the effects on estimated runoff of altering the hydrologic soil group due to urbanization were investigated. The L‐THIA model was applied to the Indiana Little Eagle Creek watershed with 5 percent and 20 percent Ia/S values, considering hydrologic soil group alteration due to urbanization. The results indicate that uses of a 5 percent la/S and modified CN values and Hydrologic Soil Group D for urbanized areas in model runs can improve long term direct runoff prediction.  相似文献   

6.
ABSTRACT: Sediment losses and water yields were measured for five years on nine forested watersheds in the Gulf Coastal Plain of Arkansas. After one year of pretreatment measurements, three watersheds were clearcut and mechanically site prepared, three were selectively harvested, and three control watersheds were left undisturbed. Sediment losses and water yields were similar for the selectively harvested and cohtrol watersheds during all four post-treatment years. However, clearcutting with mechanical site preparation significantly increased sediment losses and water yields above levels measured on other watersheds. Increased sediment losses persisted for two years, while water yields increased for one year. Although sediment losses from clear-cutting were greater than for other treatments, actual losses averaged only 264 kg/ha and 63 kg/ha for the first and second post-treatment years, respectively. The relatively low sediment losses are attributed to the flat terrain and the relatively low flow discharge rates that typify these sites.  相似文献   

7.
ABSTRACT: Grazing can have a profound impact on infiltration and thus runoff and erosion. The objectives of this study were to quantify the effects of select grazing systems on rainfall and snowmelt induced runoff and sediment yield from sloped areas of the foothills fescue grasslands of Alberta, Canada. The effects of two grazing intensities (heavy and very heavy) for two durations (short duration and continuous throughout the growing season) were compared to an ungrazed control between June 1988 and April 1991. Runoff was measured using 1-rn2 runoff frames and collection bucket systems. Sediment yields were then determined on samples from the collected runoff. Snowmelt was the dominant source of runoff. Snowmelt runoff was higher from the heavily grazed areas than from the very heavily grazed areas, due to the higher standing vegetation which accumulated snow in the former areas. Sediment yields as a result of snowmelt were generally low in all areas. Only a few summer storms caused runoff. Runoff volumes and sediment yields from summer rainstorms were low, due to low rainfall and to generally dry antecedent soil moisture conditions. The greatest risk of summer runoff, and thus sediment yield, appears to occur in August.  相似文献   

8.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

9.
ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration.  相似文献   

10.
ABSTRACT: A frequency analysis approach for the prediction of flow characteristics at ungaged locations is applied to a region of high annual precipitation and low topography in north and central Florida. Stationary time series of annual flows are fitted with the lognormal distribution and estimated parameters of the distribution are fitted by third order trend surfaces. These explain 65 and 74 percent of the observed variances in the mean and standard deviation, respectively. Predictions of parameters are then made for several locations previously unused in the study and they are used to estimate the return periods of various flows from the lognormal distribution. Application of the Kolmogorov-Smirnov goodness-of-fit test suggests that only one of the five test stations can be considered significantly different from the observed data, confirming the applicability of this technique.  相似文献   

11.
ABSTRACT: The U.S. Department of Agriculture Curve Number (CN) method is one of the most common and widely used techniques for estimating surface runoff and has been incorporated into a number of popular hydrologic models. The CN method has traditionally been applied using compositing techniques in which the area weighted average of all curve numbers is calculated for a watershed or a small number of sub-watersheds. CN compositing was originally developed as a time saving procedure, reducing the number of runoff calculations required. However, with the proliferation of high speed computers and geographic information systems, it is now feasible to use distributed CNs when applying the CN method. To determine the effect of using composited versus distributed CNs on runoff estimates, two simulations of idealized watersheds were developed to compare runoff depths using composite and distributed CNs. The results of these simulations were compared to the results of similar analyses performed on an urbanizing watershed located in central Indiana and show that runoff depth estimates using distributed CNs are as much as 100 percent higher than when composited CNs are used. Underestimation of runoff due to CN compositing is a result of the curvilinear relationship between CN and runoff depth and is most severe for wide CN ranges, low CN values, and low precipitation depths. For larger design storms, however, the difference in runoff computed using composite and distributed CNs is minimal.  相似文献   

12.
ABSTRACT: Storm-runoff quantity and quality were studied in three watersheds located near St. Paul in Ramsey County, Minnesota, from April 15 through September 15 of 1984, 1985, and 1986 to qualitatively determine the effects of precipitation and selected land uses on storm runoff. In respect to precipitation effects, differences in stormrunoff quantity between years in an urban watershed that lacks wetlands appear to be related to the average storm size (amount of precipitation) during the study period of each year. In contrast, the differences in storm-runoff quantity from watersheds that contain wetlands appear to be related to total precipitation during study period of each year. In respect to land use, the differences in storm-runoff quantity appear to be related to the amounts of impervious and wetland area. The watershed that contains the largest amount of impervious area and smallest amount of wetland area has the largest amount of storm runoff. Differences in storm-runoff quality appear to be related to the amounts of wetland and lake area. The watershed that contains the largest amounts of wetland and lake area has the smallest storm-runoff loading of suspended solids, phosphorus, and nitrogen. The wetland and lake areas likely retain the loading and, subsequently, lower the amount of storm-runoff loading exported from a watershed.  相似文献   

13.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

14.
ABSTRACT: Two intermittent streams on oak-hickory watersheds in southern Illinois were gaged with a V-notch weir and sampled with an automatic water sampler. Baseline data was collected for a period of three years. Flow volume showed large variations between years and watersheds. Water samples were analyzed for Na, K, Ca, Mg, ortho-P, and NO3-N. Water quality was consistently high, but there were significant differences between the watersheds during the calibration period. One watershed was clearcut in November 1979. One year of postharvest data has been analyzed. Flow volume increased 95 percent, but there was no evidence of increased sedimentation. There were significant increases in the stream water concentrations of K, Mg, and NO3-N of 18 percent, 8 percent, and 274 percent, respectively. Nutrient budgets for the site were not adversely affected by the harvest. The clearcutting operation appears to have had a small impact on the watershed due to minimal disturbance during the logging and below normal precipitation the first year following the harvest.  相似文献   

15.
ABSTRACT: The effects of digital elevation model resolutions and contour lengths on the distribution of the topographic index, a fundamental parameter for the hydrologic model, TOPMODEL, and their influence on the predicted peak flows are investigated in this paper. A small agricultural catchment (3.38 km2) is used to determine the catchment response modeled by TOPMODEL for three rainfall events.  相似文献   

16.
Ability to adequately estimate sediment yield is an important step in dealing effectively with soil erosion problems. Predictions of sediment yield made using the Universal Soil Loss Equation (USLE) with different forms of sediment delivery ratio (SDR) are compared with those made by Modified USLE (MUSLE) and a fundamentally derived Erosion-Deposition Model (EDM). The USLE and USLE with SDR are poor predictors of sediment yield for individual storms compared to the MUSLE and EDM. Although MUSLE gave better results than USLE it showed somewhat more scatter of data points than the recently developed EDM.  相似文献   

17.
ABSTRACT: A rainfall simulator was used on runoff plots to study the effects of simulated canopy cover, trampling disturbance, and soil type on nil and interrill erosion. Sandy loam soil was more erodible than clay loam soil. Furthermore, the simulated canopy cover signffi-Soilfactorsrelatedtonil cantly influenced nil and interrill erosion. The effect of trampling on rill and interrill erosion varied with soil type (clay loam versus sandy loam) and erosion type (nh versus interrill erosion). On large plots, where both nil and internill erosion were involved, 30 percent trampling significantly increased soil loss. However, on small plots, 30 percent trampling significantly reduced interrill erosion.  相似文献   

18.
Samples of coal pile runoff, Georges Creek water, and macrobenthos above and below two coal storage areas along Georges Creek, Allegany County, Maryland, were collected in July, August, and September 1982, and February and July 1983. Coal pile runoff was collected under high- and low-flow conditions. Water samples were analyzed for Hg, Zn, As, Fe, Mn, Al, SO4?2, pH, filterable and non-filterable residue, conductivity and acidity. Leachate from coal piles along Georges Creek contained high concentrations of heavy metals, particularly manganese, aluminum and zinc. Iron and sulfate were very high and the pH ranged from 1.4 to 3.1. Georges Creek water had much lower concentrations of metals, iron and sulfate and a pH of about 7.0. The distribution of macrobenthos in Georges Creek showed the effects of both runoff from coal storage piles and periodic drought. Brillouin's diversity index values were low even in areas which did not dry. Densities of tubificid worms and chironomid larvae were very high above the coal storage areas where organic inputs were high. At all the rest of the sampling stations, macroinvertebrate densities were very low. Where coal pile runoff enters Georges Creek, it compounds the effects of periodic drought and further stresses the aquatic community.  相似文献   

19.
ABSTRACT A 20 month study of some effects of highway construction on water quality was conducted during construction of Interstate 10 at Tallahassee, Florida. Highway construction resulted in significant increases in turbidity, suspended solids, total phosphorus, and dissolved silicon in downstream waters despite use of recommended procedures for erosion control. Highway construction did not result in significant increases in dissolved phosphorus or nitrogen.  相似文献   

20.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号