首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

2.
ABSTRACT: With the advent of standards and criteria for water quality variables, there has been an increasing concern about the changes of these variables over time. Thus, sound statistical methods for determining the presence or absence of trends are needed. A Trend Detection Method is presented that provides: 1) Hypothesis Formulation - statement of the problem to be tested, 2) Data Preparation - selection of water quality variable and data, 3) Data Analysis - exploratory data analysis techniques, and 4) Statistical Tests - tests for detecting trends. The method is utilized in a stepwise fashion and is presented in a nonstatistical manner to allow use by those not well versed in statistical theory. While the emphasis herein is on lakes, the method may be adopted easily to other water bodies.  相似文献   

3.
ABSTRACT: Ridge regression analysis is used to investigate the stability of regression estimates over twenty-three years of data in a target-control model. Two target stations in the Wind River Range in Wyoming are studied using two sets of control variables. The predictive ability of ridge regression analysis is compared to that of ordinary regression analysis. The results of this study indicate improved stability of the estimates of ridge regression over ordinary regression. The predictive ability of the ridge regression estimates is as good or better than regression estimates.  相似文献   

4.
ABSTRACT: Multivariate methods of trend analysis offer the potential for higher power in detecting gradual water quality changes as compared to multiple applications of univariate tests. Simulation experiments were used to investigate the power advantages of multivariate methods for both linear model and Mann-Kendall based approaches. The experiments focused on quarterly observations of three water quality variables with no serial correlation and with several different intervariable correlation structures. The multivariate methods were generally more powerful than the univariate methods, offering the greatest advantage in situations where water quality variables were positively correlated with trends in opposing directions. For illustration, both the univariate and multivariate versions of the Mann-Kendall based tests were applied to case study data from several lakes in Maine and New York which have been sampled as part of EPA's long term monitoring study of acid precipitation effects.  相似文献   

5.
ABSTRACT A water quality investigation on Utah Lake was conducted during the same time period that the Heat Capacity Mapping Mission (HCMM) satellite was collecting thermal infrared and reflectivity data. Relationships were established and evaluated among HCMM data and lake water quality parameters. Although remotely sensed reflective data have been previously utilized, this study was unique in that thermal emitted data were also correlated to algae concentrations and other indicators. Standard statistical evaluations were made along with utilization of color graphics techniques to identify and plot relationships. The emitted thermal energy was found to have high positive correlations with net algal concentrations and with the predominant species, Aphanizomenon flos-aquae, a blue-green alga. No continuous correlation was found for a less abundant red pigment phytoplankton, Ceratium hirundinella. Similar trends, though for negative correlations, were shown for reflectivity data and algal concentrations throughout the spring and summer. Coincidence of areas of warmer emitted energy and darker relfected energy on colorgraphics displays clearly indicate lake areas of high algal concentrations. Night thermal data displayed a strong negative correlation with algal concentration, opposite to day thermal data. Color graphics of warmer day emitted energy and cooler night emitted energy further verify areas of high algal concentrations.  相似文献   

6.
ABSTRACT: Water quality in eutrophic Lake Tohopekaliga, Florida, improved markedly from 1982 to 1992 as a result of reductions in phosphorus and nitrogen loading to the lake. Annual budgets of water, chloride, phosphorus and nitrogen were constructed for the lake, and indicate it is a sink for phosphorus and a source for nitrogen. Water column concentrations of total phosphorus, soluble reactive phosphorus, total nitrogen, dissolved inorganic nitrogen, and chlorophyll a all declined as external inputs of nutrients decreased. Water column nitrogen: phosphorus ratios have increased, suggesting a probable shift from nitrogen- to phosphorus-limitation. This apparent shift in nutrient limitation status also is supported by comparisons of the mean Trophic State Indices for phosphorus, nitrogen, and chlorophyll a. These improvements in water quality are attributed to the diversion of wastewater treatment plant effluent from the lake, and the increased use of wet retention ponds for stormwater runoff.  相似文献   

7.
ABSTRACT Changes in water chemistry, water clarity, and planktonic chlorophyll a were measured as hydrilla (Hydrilla verticillata) abundance increased and then decreased in Lake Baldwin, Florida. Grass carp (Ctenopharyngodon idella) were used to eliminate submersed macrophytes. No major trends in lake pH, conductivity, or total nitrogen concentrations occurred in association with changes in hydrilla levels. Increased Secchi disc transparency and reductions in total alkalinity, calcium, magnesium, potassium, total phosphorus, and chlorophyll a concentrations occurred as hydrilla abundance increased. Large increases in the chemical parameters and a reduction in Secchi disc transparency occurred as hydrilla decreased and was eliminated from the lake by grass carp. The effects of hydrilla on lake water chemistry are related to the percentage of the lake's volume infested with hydrilla and macrophyte standing crop.  相似文献   

8.
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions.  相似文献   

9.
ABSTRACT: Ground water quality is an environmental issue of national concern. Agricultural activities, because they involve large land areas, often are cited as a major contributor of ground water contaminants. It appears that some degree of ground water contamination from agricultural land use is inevitable, especially where precipitation exceeds evapotranspiration. For this reason, and because agriculture differs significantly from point sources of pollution, farmers, policymakers, and scientists need alternative management strategies by which to protect ground water. Mathematical models coupled to geographic information systems to form expert systems can be important management tools for both policymakers and agricultural producers. An expert system can provide farmers, researchers, and environmental managers with information by which to better manage agricultural production systems to minimize ground water contamination. Significant research is necessary to perfect such a system, necessitating interim ground water management strategies that include not only a strong research program, but educational and public policy components as well.  相似文献   

10.
ABSTRACT: Storm water runoff studies of three small basins (20, 40, and 58 acres) in the Fort Lauderdale area of Florida were conducted by the U.S. Geological Survey in 1974–78. The basins were homogeneously developed with land uses being: commercial, single family residential, and high traffic volume highway. Synchronized data were collected for rainfall, storm water discharge, storm water quality, and bulk precipitation (rainfall plus dry fallout) quality. Analysis of the storm water discharge data showed that most runoff was from impervious areas hydraulically connected to drain inlets. Regression analyses of the storm water discharge and water quality data indicated that storm loads from the single family residential area correlated strongly with peak discharge and length of antecedent dry periods. Storm loads from the highway area correlated strongly with rainfall and less strongly with peak discharge and antecedent dry periods. Storm loads from the commercial area correlated strongly with peak discharge and rainfall, and less strongly with antecedent dry periods. On a unit area basis, the single family residential area yielded the largest loads of nitrogen, phosphorus, and dissolved solids. The commercial area yielded the largest loads of lead, zinc, and chemical oxygen demand. Yields of carbon were about the same for the three areas. Constituent loadings derived directly from the atmosphere were estimated on the basis of bulk precipitation samples and compared with storm runoff loads from the highway and commercial areas.  相似文献   

11.
ABSTRACT The problem of estimating missing values in water quality data using linear interpolation and harmonic analysis is studied to see which one of these two methods yields better estimates for the missing values. The data used in this study consisted of midnight values of dissolved oxygen from the Ohio River collected over a period of one year at Stratton station. Various hypothetical cases of missing data are considered and the two methods of supplementing missing values are evaluated using statistical tests. The results indicate that when the percentage of missed data points exceeded ten percent of the total number in the original sample, harmonic analysis usually yielded better estimates for both the regularly and irregularly missed cases. For data that exhibit cyclic variation, examples of which are dissolved oxygen concentration and water temperature, harmonic analysis as a data generation technique appears to be superior to linear interpolation.  相似文献   

12.
ABSTRACT. A relatively straightforward illustration of the potential uses of State Estimation techniques in water resources modeling is given. Background theory for Linear and Extended Kalman Filters is given; application of the filter techniques to modeling BOD and oxygen deficit in a stream illustrates the importance of model conceptualization, model completeness, uncertainty in model dynamics and incorporation of measurements and measurement errors. Potential applications of state estimation techniques to measurement system design; model building, assessment and calibration; and data extension are explored.  相似文献   

13.
ABSTRACT: Diquat herbicide and rhodamine WT dye were applied in a lake to three 1.6 ha plots either with a polymer, which reportedly aids in sinking and confinement of aquatic herbicides, or without a polymer. Diquat and dye concentrations were measured at three different depths in the water column within the plots during the first three hours after application to determine vertical distribution of diquat and dye, and in composite samples at fixed distances from the plot up to 168 hours after application to determine movement out of the treated plots. Diquat and dye were homogeneous in the water column when no polymer was used, but were concentrated near the surface when polymer was used. This distribution may have resulted from temperature stratification. Polymer did not affect movement of diquat or dye out of the plots. The half-lives of diquat within the plots were 25 (SE=6.2) hr, 39 (SE=4.3) hr, and 25 (SE=2.0) hr. Forty-six percent of samples collected at the edges of the plots did not contain detectable diquat residues and only 66 percent of those samples with detectable diquat contained greater than the potable water tolerance (10 ppb). Diquat was not found in any samples 168 hours after application 61 m or farther from the edge of the plots. Dye and diquat concentrations were weakly correlated within and outside the plots. Dye half-lives were consistently higher than diquat, which suggests that the herbicide was removed from the water by plants and sediments more rapidly than dye.  相似文献   

14.
Summer lake survey measurements of total phosphorus (TP) and chlorophyll a (CHLa) from 188 reserviors and natural lakes in the midwest were analyzed to determine the magnitude of major sources of variability. Median variance among replicate samples collected at the same location and time was about 7-8 percent of the mean for both TP and CHLa. Median observed temporal variability within summers was 27 percent of the mean for TP and 45 percent of the mean for CHLa. Median values of year-to-year variance in average TP and CHLa were 22 percent and 31 percent of the mean, respectively. A range of approximately two orders of magnitude was observed among individual estimates of variance in each of these categories. The magnitude of observed temporal variability was affected only slightly by variance among replicate samples on individual days and was weakly correlated with the length of time during which samples were collected from individual lakes. Observed temporal variation was similar between reservoirs and natural lakes when variances were calculated with logtransformed data. The magnitude of temporal and year-to-year variance can severely limit the power of statistical comparisons of TP and CHLa means, but has less effect on establishing relative rankings of lake means, Sources and relative magnitude of variability are important in the use of TP and CHLa data in regression models and in the planning of lake surveys and subsequent data analysis.  相似文献   

15.
ABSTRACT: The potential for detecting the concentration and type of soils suspended in surface water through remote sensing techniques was investigated by studying the spectral reflectance of two types of soils in suspension. In a large tank filled with 7510 liters of water, 20 levels of suspended sediment (soil) concentration (SSC), ranging from 50 to 1000 mg/l were prepared. A high resolution spectroradiometer was used to measure the reflectance at each SSC level. The reflectance spectra of two contrasting soils were distinct in the visible and near infrared (NIR) portions of the electromagnetic spectrum. The wavelength range between 580–690 nm (visible) was found to be optimal for indicating the type of soil, whereas, the wavelength range between 714–880 (NIR) was found to be appropriate for estimating the concentration of sediment suspended in surface waters.  相似文献   

16.
ABSTRACT: The analysis of stream flow and several water quality parameters in six Illinois rivers showed both deterioration and improvement in quality indicators during 1976–1977 drought. The adverse impacts were an increase of ammonia and manganese concentrations and, to a lesser degree, increased concentrations of phenol and specific conductance. At the worst point during the drought, the 12-month moving average of monthly ammonia concentration in the Sangamon River was about 620 percent higher than the antecedent value. On the other hand, average concentrations of nitrites and nitrates, total iron, and the number of coliform bacteria significantly decreased. This positive response suggests that streams which are considered unsuitable for municipal supply due to high levels of these quality indicators may be used as emergency sources during droughts.  相似文献   

17.
ABSTRACT: Sulfometuron methyl [methyl 2-[[[[4,6-dimethly 2-(pyrimidinyl) a-mino] carbony l]amino] sulfonyl] benzoate] was applied by a ground sprayer at a maximum labeled rate of 0.42 kg ha-1 a.i. to a 4 ha Coastal Plain flatwoods watershed as site preparation for tree planting. Herbicide residues were detected in Streamflow for only seven days after treatment and did not exceed 7 mg m-3. Sulfometuron methyl was not detected in any stormflow and was not found in any sediment (both bedload and suspended). Sampling of a shallow ground water aquifer, > 1.5 m below ground surface, did not detect any sulfometuron methyl residues for 203 days after herbicide application. Lack of herbicide residue movement was attributed to low application rates, rapid hydrolysis in acidic soils and water and dilution in streamflow.  相似文献   

18.
ABSTRACT: A survey of 61 headwater streams and their watersheds on Pennsylvania's Laurel Hill, an area of high hydrogen ion and sulfate deposition, was conducted in May and June 1983. Trout were absent from 12 or 20 percent of the streams. No fish were present in 10 streams. Thirty-three streams appeared to contain viable trout populations, 10 streams had other interferring cultural impacts and 6 streams had nonviable trout populations. Significant differences in water quality were noted among streams with and without fish. The streams having no fish as a group had significantly lower pH and alkalinity and higher dissolved aluminum than those with fish. Attempts were made to correlate soil type and geology with the presence or absence of trout. Watersheds with a major percentage of very stony land soil classifications always contained no trout or were culturally impacted. On the other hand, watersheds with a major percentage of Upshur (limestone derived) soils always supported trout. Watersheds with more than 30 percent Pocono Group bedrock supported trout in every case but two, while in every case but one, watersheds with more than 30 percent Pottsville Group bedrock did not support trout. Acid runoff episode data indicate severe transient acidification attributable to atmospheric deposition. It appears that a combination of very stony land, 30 percent Pottsville Group bedrock and high deposition of hydrogen ions and sulfate may result in transient acidification and absence of fish populations from headwater streams on Pennsylvania's Laurel Hill.  相似文献   

19.
ABSTRACT: Knowledge of coliform transport and disappearance may provide information for project design and operation that minimizes potential water quality problems such as the violation of body contact recreation standards. Storm events were sampled in the Caddo River above DeGray Reservoir, Arkansas, and then tracked through the reservoir using the increased turbidity associated with the storm flows. Fecal coliforms were sampled both in the river and throughout the water column in the reservoir. In general, increased fecal coliform concentrations were closely associated with the increased turbidity resulting from the storm flows. This association existed for all three types of turbidity plume movement - overflow, interflow, and underflow. As the turbidity plume moved down the reservoir, fecal coliform concentrations decreased due to die-off, settling, and dilution. With several assumptions, it is possible to use this information to assist in locating recreational sites in a reservoir or to anticipate possible body contact standard violations at existing recreation sites.  相似文献   

20.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号