首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
ABSTRACT: A two-dimensional particle tracking model is developed for estuarine water quality investigation. The method requires only the solution of a two-dimensional hydrodynamics model and, therefore, is more economical to use than conventional multi-dimensional estuarine transport models. The present model does not consider turbulent diffusion, and it handles only conservative constituents. The model was applied to Humboldt Bay, California, where the flushing of sewage effluent was simulated. The model was applied to evaluate the present release plan, and to determine alternative release plans for limiting the transport of sewage effluent into shellfish producing areas Within the Bay.  相似文献   

3.
ABSTRACT. Transient, two-dimensional solutions are developed which describe the movement and distribution of a conservative substance in a stream-aquifer system. The solutions are obtained by solving sequentially the groundwater flow and mass transport equations. A variational approach in conjunction with the finite element method is used to solve the groundwater flow equation. Galerkin's approach coupled with the finite element method is used to solve the mass transport equation. Linear approximated triangular elements and a centered scheme of numerical integration are employed to calculate the hydraulic head distribution and the concentration of solute in the flow region. The linear approximation used to define the concentration function within each element is not appropriate for cases involving steep concentration gradients. For such cases, higher order approximations are necessary to assure the continuity of gradients across interelemental boundaries. Numerical examples that illustrate the applicability of the model are presented.  相似文献   

4.
A two-dimensional reservoir toxics model is essential to establishing effective water resources management and protection. In a reservoir, the fate of a toxic chemical is closely connected with flow regimes and circulation patterns. To better understand the kinetic processes and persistence and predict the dissipation of toxic contaminants in the reservoir during a spill or storm runoff event, a toxics submodel was developed and incorporated into an existing laterally integrated hydrodynamics and transport model. The toxics submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The two-dimensional toxicant simulation model was applied to Shasta Reservoir in California to simulate the physico-chemical processes and fate of a volatile toxic compound, methyl isothiocyanate (MITC), during a chemical spill into the Sacramento River in 1991. The predicted MITC concentrations were compared with those observed. The effect of reservoir flow regimes on the transport and fate of the toxic substance was investigated. The results suggested that the persistence of MITC is significantly influenced by different flow regimes. Methyl isothiocyanate is more persistent in the reservoir under an interflow condition due to reduced volatilization from deep layers than under an overflow condition. In the overflow situation, the plume moved more slowly toward the dam and experienced greater dissipation. This analysis can assist in toxic spill control and reservoir management, including field sampling and closure of water intakes.  相似文献   

5.
ABSTRACT: This paper presents a parameter sensitivity study of a two-dimensional flow and transport model of a contaminated site. Hydrogeological and site data from previous investigations were used for calibration. The USGS contaminant transport model (MOC) was used. After flow calibration to establish a reference model, parameters were varied to examine the effect each had on predictions of a contaminant plume. Hydrogeological parameters and a step size parameter were incrementally varied individually. Each result was compared to the reference model output to evaluate changes in concentration values and contaminant plume configuration. The study indicated that a generally predictable trend can be established for some parameters not affected by pumping or similar high stresses. Ranges were identified to relate concentration error or plume change to the amount of parameter error. Some parameter perturbations produced distorted model responses at high stress locations. Porosity and anisotropy were found to be the most influential of the model parameters studied on the plume predictions. (KEY TERMS: ground water hydrology; hydrogeology; pollution modeling; water quality; model calibration.)  相似文献   

6.
ABSTRACT: A bacterial transport model, developed to analyze bacterial translocation in coarse-grained soils, is presented. The complex governing equation is presented first, followed by analyses of each of the major processes influencing bacterial transport. These analyses suggest simplification of the governing equation is feasible when input data on specific processes are limited or unavailable. Model parameters, including bacterial die-off, bacterial distribution, input bacterial concentration, and saturated hydraulic conductivity, were randomly generated using a procedure known to produce either a normal or log-normal distribution of random numbers. Monte Carlo simulations were completed, and the resulting output was used to generate cumulative frequency distributions showing the probability of bacterial transport beyond various soil depths. Results from these simulations indicate that bacteria have a high probability of traveling through coarse-grained soils when low clay content and soil water temperatures limit bacterial retention and die-off.  相似文献   

7.
ABSTRACT A mathematical model was developed to solve a steady free surface flow problem and a rapid drawdown problem in a two-dimensional porous medium. The same problem was also solved by an analogue device and excellent agreement was found to exist between the two solutions. This paper contains the formulation of the numerical problem from first principles and a discussion of measures that had to be taken in order to assure numerical stability and proper convergence of the solution. Although the scope of this study was limited to a two-dimensional flow case, the elements of simulation discussed are general in nature and applicable to three-dimensional problems. It was demonstrated that numerical solution can be obtained for the position of the free surface at given time intervals, for the piezometric head distribution within the flow field and for flow quantities across given boundaries. In addition, the mathematical model will permit consideration of nonhomogeneous or anisotropic characteristics of the porous medium, without difficulty. It is concluded that mathematical models, incorporating some or all of the techniques discussed in this paper, in conjunction with some analogue control device, can be very efficient and reliable tools for solving complex porous flow problems, including those which, so far, have eluded comprehensive analysis, due to physical and/or cost limitation.  相似文献   

8.
ABSTRACT: A comparative study of ground water level predictions on hillside slopes using two models is presented. The models are a simplified mass balance model that has components for evapotran-spiration, recharge, and drainage; and a two-dimensional finite difference model that employs kriging to estimate soil parameters and accounts for non-uniform thickness of the soil layer. These models are representative of a wide range of modeling capabilities and are used to illustrate the sensitivity of ground water level predictions to the sophistication of the modeling techniques. The drainage and recharge components of the two models are evaluated and the importance of unsaturated flow in recharge computations is underscored. Piezometric observations in a small drainage depression on the slope of Kennel Creek Valley in Tongass National Forest, Alaska, were used to evaluate the two models. The results show that, although the predictions differ from the field observations, the simple physically-based mass balance model predicts the ground water levels as well as the two-dimensional model. It is suggested that caution should be exercised in using complex models to validate simpler models.  相似文献   

9.
ABSTRACT: A distributed watershed model was developed to mathematically simulate overland and channel flow for a single-event storm. The modeled watersheds in the study were subdivided into rectangular grid elements. All hydrologically significant parameters, such as land slope, rainfall and precipitation excess, were assumed to be uniform within each element. The Green-Ampt method was adopted to generate precipitation excess for each element during the simulation period. A two-dimensional diffusion wave model was used for overland flow routing and an iterative Alternative Direction Implicit scheme was used to solve the simultaneous overland flow equations. Once the overland flow became inflow to the channel, a one-dimensional dynamic wave flood routing technique, based on a four-point, implicit, non-linear finite difference solution of the St. Venant equation of unsteady flow, was applied. A limited number of comparisons were made between simulated and observed hydrographs for areas of about one square mile. Given the appropriate parameters, the model was able to accurately simulate runoff for single-event storms. This paper describes a distributed watershed model developed to simulate overland and channel flow. Comparisons were made between simulated and observed hydrographs for three watersheds. The model was able to accurately simulate the runoff for single-event storms using 61-m by 61-m (200 ft by 200 ft) watershed grid elements.  相似文献   

10.
The paper presents a quantitative engineering approach to analysis of total environment allowing for simultaneous consideration of a theoretically infinite number of quality indicators and physiological requirements. It discusses theory and fundamentals of a two-dimensional space and time function solution concerning a small estuarine-type environment. A three dimensional solution is indicated. Input data may range from reconnaissance-type to the outputs of mathematical transport models. Applications are discussed with respect to environmental quality problems, availability of suitable data, and some areas of research where results could find immediate application.  相似文献   

11.
During April 2007 through September 2008, the USGS collected hydrogeologic and water-quality data from a site on the Bogue Phalia to evaluate the role of groundwater and surface-water interaction on the transport of nitrate to the shallow sand and gravel aquifer underlying the Mississippi Alluvial Plain in northwestern Mississippi. A two-dimensional groundwater/surface-water exchange model was developed using temperature and head data and VS2DH, a variably saturated flow and energy transport model. Results from this model showed that groundwater/surface-water exchange at the site occurred regularly and recharge was laterally extensive into the alluvial aquifer. Nitrate was consistently reported in surface-water samples (n = 52, median concentration = 39.8 μmol/L) although never detected in samples collected from in-stream piezometers or shallow monitoring wells adjacent to the stream (n = 46). These two facts, consistent detections of nitrate in surface water and no detections of nitrate in groundwater, coupled with model results that indicate large amounts of surface water moving through an anoxic streambed, support the case for denitrification and nitrate loss through the streambed.  相似文献   

12.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   

13.
14.
The production, use, and disposal of nanomaterials may inevitably lead to their appearance in water. With the development of new industries around nanomaterials, it seems necessary to be concerned about the transport of nanomaterials in the environment. In this paper, the transport of acid-treated carbon nanotubes (CNTs) in porous media was investigated. Before the mobility investigation, the stability of acid-treated CNT dispersions was studied using ultraviolet-visible spectra and it was indicated that, under the chemical conditions employed in this work, there was no apparent aggregation. The mobility investigation showed that transport of acid-treated CNTs increased with treatment time due to increase in particle zeta potential. Carbon nanotubes treated with nitric acid for 2, 6, and 12 h possessed measured zeta potentials of -30.0, -43.0, and -48.5 mV, respectively. Utilizing clean-bed filtration theory, we showed that acid-treated CNTs have the potential to migrate 3.28, 5.67, and 7.69 m in saturated glass beads, respectively. We showed that solution ionic strength and pH have important effects on the mobility of acid-treated CNTs. Increasing the pH from 6.0 to 7.9 resulted in an increase in migration potential from 2.96 to 10.86 m. Increasing the ionic strength from 0.005 to 0.020 M resulted in a decrease in CNT migration potential from 5.67 to 1.42 m.  相似文献   

15.
A study of historical storm-induced changes along the south shore barriers of Long Island (Fire Island Inlet to Southampton), New York, USA, was undertaken in an effort to determine the relative roles of different transport processes in barrier migration. Inlets were found to have a profound effect on the barrier system, largely controlling its landward migration, based upon maps, charts, and aerial photographs from the seventeenth century to the present. Salt marshes became established principally on the broad intertidal bay shoals left by a closed or slowly migrating inlet. Inlets along this microtidal coast are now stabilized by jetties, which may have a negative effect on long-term barrier-island migration.  相似文献   

16.
ABSTRACT: The movement of precipitation water infiltrating through the material (refuse) of solid waste landfills is examined via numerical solution of the equations of continuity, and motion (Darcy's Law). The solution of the equations is obtained by a fully implicit, finite-difference scheme. Both unsaturated and saturated surface conditions are considered, making the scheme suitable for real-time simulation of net precipitation and moisture redistribution events. A sensitivity analysis showed that for unsaturated surface conditions the solution is primarily affected by hydraulic conductivity and capillary diffusivity, and is relatively independent of the space and time steps. In addition, the precipitation averaging process is shown to be critical in the correct computation of moisture transport during the time period where the transition from unsaturated to saturated conditions occurs. The model presented herein is suitable for analysis of water movement through landfills, and the design of bottom collection systems.  相似文献   

17.
Hillslope vegetated buffers are recommended to prevent water pollution from agricultural runoff. However, models to predict the efficacy of different grass buffer designs are lacking. The objective of this work was to develop and test a mechanistic model of coupled surface and subsurface flow and transport of bacteria and a conservative tracer on hillslopes. The testing should indicate what level of complexity and observation density might be needed to capture essential processes in the model. We combined the three-dimensional FEMWATER model of saturated-unsaturated subsurface flow with the Saint-Venant model for runoff. The model was tested with data on rainfall-induced fecal coliforms (FC) and bromide (Br) transport from manure applied at vegetated and bare 6-m long plots. The calibration of water retention parameters was unnecessary, and the same manure release parameters could be used both for simulations of Br and FC. Surface straining rates were similar for Br and bacteria. Simulations of Br and FC concentrations were least successful for the funnels closest to the source. This could be related to the finger-like flow of the manure from the strip along the bare slopes, to the transport of Br and FC with manure colloids that became strained at the grass slope, and to the presence of micro-ponds at the grassed slope. The two-dimensional model abstraction of the actual 3D transport worked well for flux-averaged concentrations. The model developed in this work is suitable to simulate surface and subsurface transport of agricultural contaminants on hillslopes and to evaluate efficiency of grass strip buffers, especially when lateral subsurface flow is important.  相似文献   

18.
ABSTRACT: A model for estimating the probability of exceeding groundwater quality standards at environmental receptors based on a simple contaminant transport model is described. The model is intended for locations where knowledge about site-specific hydrogeologic conditions is limited. An efficient implementation methodology using numerical Monte Carlo simulation is presented. The uncertainty in the contaminant transport system due to uncertainty in the hydraulic conductivity is directly calculated in the Monte Carlo simulations. Numerous variations of the deterministic parameters of the model provide an indication of the change in exceedance probability with change in parameter value. The results of these variations for a generic example are presented in a concise graphical form which provides insight into the topology of the exceedance probability surface. This surface can be used to assess the impact of the various parameters on exceedance probability.  相似文献   

19.
A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such as 1,1,1-trichloroethane (TCA) and trichloroethylene (TCE) from dilute aqueous solutions. This polymer-ceramic composite membrane yielded significantly higher VOC selectivity than an SBS membrane without the ceramic support, for comparable fluxes. At VOC concentrations near 100 ppm, fluxes and selectivities of VOCs were essentially independent of the number of VOCs in solution. The liquid-side boundary layer resistance dominated mass transport. The experimental data fitted the resistance-in-series model and yielded reliable membrane permeability values. This method using this high-performing membrane offers potentially cleaner and cost-effective means of recovering VOCs from contaminated streams.  相似文献   

20.
ABSTRACT: A two-dimensional dam-break model was used to predict the inundated area on an alluvial fan downslope from the Orange County Reservoir. The model is based upon a diffusion form of the continuity and momentum equations for long waves in shallow water, and the governing equation is solved by an explicit numerical scheme. In a comparison with a one-dimensional model, the two-dimensional model predicts a wider inundated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号