首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Prediction of future water demands depends on the degree to which conservation effects can be anticipated. A model developed for the Corps of Engineers shows that choosing a numerical conservation target to be achieved is more meaningful and yields more predictable results than price or price elasticity manipulations. The method developed and then applied to the Kaneohe Bay region of Oahu considers the following determinants of demand: geographic distribution of the users, indoor and outdoor requirements, time - by year and month of the year, precipitation, historical unit usage rates, gross and irrigable acreage of land uses, price for water, elasticity of demand with respect to price, source of the water supply (local private supplies vs. agency supplies), and the percentage conservation savings anticipated in each future period in indoor and outdoor uses of water in each of 40 possible land uses. While developed for use in Hawaii, the model is applicable generally.  相似文献   

2.
ABSTRACT: The importance of estimating peak water demands for determining the dimensions of pipe size and meters which provide household water to multifamily residences is examined. Several methods utilized in North America and Europe are examined. The analysis makes clear the necessity of studying the peak water demand through statistics based on local data concerning multifamily residences. For different periods of return, the peak demand of a given apartment building is related to its size (the number of apartments) in order to compare the results obtained with existing formula. By use of Ridge-regression technique, the relationship between peak water demand, and building size (number of apartments) and available pressure is established. It can be concluded that peak demand can be estimated with the square root of number of apartment units in the building and the cube root of water pressure.  相似文献   

3.
Abstract: Many municipalities have implemented demand management of outdoor water use. Measures such as restrictions on lawn watering and promotion of xeriscaping are effective in reducing water demand during summer months, especially during dry spells. However, little research examines a key factor shaping the success of these programs: residents’ perceptions of and satisfaction with such conservation measures. This article describes an urban outdoor water conservation program in Guelph, Ontario, assesses that program from the perspective of residents, and explores socio‐economic, attitudinal and other factors associated with residents’ assessment of the program. A survey of Guelph residents revealed broad support for the program, which includes restrictions on various outdoor water uses and, under certain circumstances, a ban on lawn watering. However, there was much uncertainty among residents about the effectiveness of the program in reducing water use and the effectiveness of program enforcement. Key factors influencing residents’ assessment of the program were neighborhood, gender and environmental attitude. Implications for the design and implementation of outdoor water conservation programs are discussed, including the importance of better communication of information on program effectiveness and enforcement.  相似文献   

4.
ABSTRACT: Many rural areas of the United States still have no public domestic water systems. Typical land use patterns in these areas may require 1/2 mile or more of pipe per farm connection. Public systems serving these areas are economically feasible only if realistic short-term peak demand standards are available for their design. The lack of reliable data upon which to establish such criteria has resulted in a large variation in criteria among state and federal agencies involved in financing and in approving construction of these systems. During the summer of 1975 three distribution laterals of a rural system in Utah were master metered and instantaneous peak flows were recorded for 4 months. The metered lines served 4, 12, and 22 farm houses each. The frequency distribution of peak flows has been analyzed and compared with that developed during similar research in Mississippi and with the existing design standards of the Farmers Home Administration and the State of Utah.  相似文献   

5.
To design water distribution network infrastructure, water utilities formulate daily demand profiles and peaking factors. However, traditional methods of developing such profiles and peaking factors, necessary to carry out water distribution network modelling, are often founded on a number of assumptions on how top-down bulk water consumption is attributed to customer connections and outdated demand information that does not reflect present consumption trends; meaning infrastructure is often unnecessarily overdesigned. The recent advent of high resolution smart water meters allows for a new novel methodology for using the continuous ‘big data’ generated by these meter fleets to create evidence-based water demand curves suitable for use in network models. To demonstrate the application of the developed method, high resolution water consumption data from households fitted with smart water meters were collected from the South East Queensland and Hervey Bay regions in Australia. Average day (AD), peak day (PD) and mean day maximum month (MDMM) demand curves, often used in water supply network modelling, were developed from the herein created methodology using both individual end-use level and hourly demand patterns from the smart meters. The resulting modelled water demand patterns for AD, PD and MDMM had morning and evening peaks occurring earlier and lower main peaks (AD: 12%; PD: 20%; MDMM: 33%) than the currently used demand profiles of the regions’ water utility. The paper concludes with a discussion on the implications of widespread smart water metering systems for enhanced water distribution infrastructure planning and management as well as the benefits to customers.  相似文献   

6.
Although the volume of potable water used at recreation developments is minor relative to total regional water use, very high quality is required and the source is often of limited capacity, such as a mountain spring or small local aquifer. Frequent confrontations between developers and regulatory agencies result from claims by developers that water demand will be very small while regulators tend to treat such developments the same as municipal residence. Almost no published data base exists for resolving such conflicts. Included here are: 1) Water use measurements of various peak period durations (seasonal, monthly, daily, and instantaneous) at several types of recreational developments in Utah and Wyoming (mountain cabins, both ski- and water-based condominiums, and recreation vehicle campgrounds), 2) statistical (frequency) analysis of the data and a comparison with municipal demands in the same region, and 3) analysis of occupancy rates at the various categories of developments.  相似文献   

7.
ABSTRACT: This study proposes that demand management through pricing policies can be used in conjunction with supply management to solve water supply problems. Economic principles are shown to apply to rural residential water use. A demand function for water was developed based on cross-sectional water use data collected in Kentucky. Price was found to be a significant determinant of the quantity of water demanded. A constant price elasticity of -0.92 was found. The demand function was used in a simulation analysis to determine reservoir capacity needed to supply water needs of a rural community. The simulation revealed that price can significantly affect required reservoir storage.  相似文献   

8.
ABSTRACT: Increasing costs and competition for water have resulted in pressure to manage urban water demand through conservation programs. Metering, pricing, devices, restrictions, building code changes, and horticultural practices have all been effective in reducing average residential water use. Some conservation means are specifically aimed at reducing peak demands but these usually reduce average usage as well. Combined programs of conservation can be expected to reduce urban demand by as much as 25–30 percent over the long term. Restrictions can reduce water usage on the short term even further. The success of conservation programs is as dependent on the effectiveness of public education and information dissemination as on the conservation practices themselves.  相似文献   

9.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

10.
ABSTRACT: An index of residential water efficiency - a “W-Index” - can serve as a measure of effectiveness of water conservation features in the home. The index provides a calculated numerical value for each dwelling unit, derived from the number and kind of water-saving features present, including indoor and outdoor water savers and water harvesting or recycling systems. A W-Index worksheet, devised for on-site evaluation of single-family residences in the Tucson, Arizona, region shows that a nonconserving residence with all the water-using features would use 151,000 gallons per year or 148 gallons per capita per day (gpcpd), while the fully conserving model would use 35,300 gallons per year or 35 gpcpd and with water harvesting and graywater recycling systems would have a maximum W-Index of W-160. A Tucson water conservation demonstration home, Casa del Agua, received a rating of W-139, and field tests of about 30 homes in new Tucson subdivisions show values ranging from W-75 to W-100, indicating the incorporation of some water conservation in current new models. By adjustment of some climatic or water-use parameters, the W-Index format can be applied to various types of dwelling units or to other urban areas. The W-Index can be used by individual homeowners or builders to evaluate water efficiency of residential units, or by water providers or water management agencies as a device for promoting and achieving water conservation goals.  相似文献   

11.
ABSTRACT: This study examines water consumption characteristics in Casablanca and analyzes approaches for sustainable water demand management. Research procedures involve the development and estimation of water demand models for the residential/commercial, industrial, and institutional sectors; forecasts of water demand to 2010; and simulation of the effects of a complex of water conservation methods on the forecasted demands. The results indicate that residential/commercial water demand is weakly responsive to price changes (elasticity =?0.448) while institutional water demand is slightly more responsive (elasticity =?0.648). The conservation approaches used in the simulations included public education, plumbing code revisions to require use of water conservation devices, leak detection and repair, pricing policy, metering, and pressure reduction. The results indicate that considerable saving in water use can be attained through a comprehensive water demand management program.  相似文献   

12.
ABSTRACT: The water reductions resulting from Contra Costa Water District's 1989 residential audit program are measured using a multivariate regression model. The model explains metered residential water use as a function of both conservation and other household variables. The principle conclusions drawn are that (1) installation of low-flow showerheads reduced indoor water use by 9.7 percent or 7.8 gallons per capita day, (2) the outdoor segment of the audit reduced irrigation needs by 18.7 percent, and (3) irrigation timers are being used inefficiently.  相似文献   

13.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

14.
This study investigates the variability of household water use in Melbourne with the aim of improving the current understanding of factors affecting residential water use. This understanding is critical to predicting household water demand, particularly at an appropriate spatial and temporal resolution to support Integrated Urban Water Management based planning and to improve the understanding on how different household water demands respond to demand management strategies. The study used two sets of data each collected from 837 households under significantly different water use conditions in the years 2003 and 2011. Data from each household consist of the household characteristics and quarterly metre readings. Ordinary Least Square regression analysis followed by detailed analysis of each factor was used to identify key factors affecting household water use. The variables studied are household size, typology of dwelling, appliance efficiency, presence of children under 12 years, presence of children aged between 12 and 18 years, tenancy, dwelling age, presence of swimming pool, evaporative cooler, and dishwasher. All of them except presence of children aged between 12 and 18 years, tenancy and dwelling age were identified as variables that contribute to the variability of household water use in Melbourne. The study also found that the explanatory capacity of these variables increases with decreasing water use. This paper also discusses the significance of the explanatory variables, their impact and how they vary over the seasons and years. The variables found in this study can be used to inform improved prediction and modelling of residential water demand. The paper also explores other possible drivers to explain residential water use in light of the moderate explanatory capacity of the variables selected for this study thus, provides useful insights into future research into water demand modelling.  相似文献   

15.
The use of linear programming as a planning tool for determining the optimal long-range development of an urban water supply system was explored. A stochastic trace of water demand was synthesized and used as an input to the model. This permitted evaluating the feasibility of imposing demand restrictions as an effective cost reduction mechanism. The City of Lincoln, Nebraska, was used as the urban model. The fundamental problem was to allocate limited water supplies from several sources to an urban load center to minimize costs and comply with system constraints. The study period covered twenty years, and findings indicate the planning direction for stage development during this period. Sensitivity analyses were performed on cost coefficients and demands. Thirteen sources were included in the initial computations. Conclusions were that linear programming and generated demand traces are useful tools for both short- and long-term urban water supply planning. Lowering peak demands results in long-range development of fewer sources of supply and more economic and efficient use of the supplies developed.  相似文献   

16.
ABSTRACT: Pricing policy in water allocation has become of more concern as some areas find water is indeed a scarce resource. Demand estimates, where the quantity purchased-value in use relationships are of concern, have been made in other studies for residential, industrial, and agricultural uses in many areas of the country. The price-quantity relations for water use in commercial firms are estimated and discussed for several different types of stores in this study. A derived demand model is used to estimate commercial demand in the Miami, Florida, area. The price elasticity was generally low (inelastic) for all groups studied except for department stores. This group was found to have an elastic demand for water at all prices above $0.93 per thousand gallons purchased per month, where the mean price for this part of the sample was $1.24. The major implication of the study is that commercial establishments may be responsive to price changes over the long run, much as has already been shown for other types of user groups in other studies.  相似文献   

17.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

18.
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase.  相似文献   

19.
Tsai, Yushiou, Sara Cohen, and Richard M. Vogel, 2011. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies. Journal of the American Water Resources Association (JAWRA) 47(4):687‐701. DOI: 10.1111/j.1752‐1688.2011.00534.x Abstract: We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather‐sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low‐water‐demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields.  相似文献   

20.
ABSTRACT: The paper outlines both the methods used and the results obtained in a study of the demand for municipal and industrial water for the Seattle region. The study was made as part of a regional water management study program, one objective of which is to “… identify, quantify, and set priorities for all current and future water uses …”. A basic concept in the study of municipal and industrial water use is that the demand for water is derived from the demand for output and the direct services that water provides. Principal characteristics of the study are: (1) Water use is studied by type - residential, commercial, industrial and public -with identification of factors affecting each; (2) Water demands are studied by season as well as on an annual basis; (3) Projections of future water use are tied directly to projections of economic change in the service area; and (4) The effects of alternative policies on water use are estimated. Water use levels are projected under alternative regional growth assumptions provided by the Puget Sound Governmental Conference, a regional planning agency. Thus, the water use planning is consistent with other regional planning programs in this respect. The results can be varied according to changes in specific factors affecting water use. The factors considered in the present study include: single-family residential lot size, distribution of population between single- and multi-family units, per capita water use by multi-family unit residents, and industrial and commercial water use per employee. An income elasticity of demand was estimated for single-family residential water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号