首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed.  相似文献   

2.
ABSTRACT. The Nation has entered a new era of water quality management in which land use policy and regulation must assume an increasingly important role. The benefits of tertiary and advanced waste treatment may be offset by contradictory land use and pollution from land runoff. Unless land use planning and controls are included in water quality management, land-imposed constraints on water quality can be anticipated. Pollution from major types of land runoff are reviewed with respect to sources, effects, and control procedures. Emphasis is given to land use practices and controls. The crucial issue with regard to the latter is lack of land use policies at federal, state, and local levels. State legislation establishing guidelines and minimum standards for land use regulation by local government is required. The dependency of water quality on land use points to the fallacy of attempting to provide for comprehensive water pollution control outside the context of comprehensive land-water resource planning and management.  相似文献   

3.
ABSTRACT: Increasingly, residential development in urbanizing areas is accomplished by large housing projects, composed of clusters of townhouses or garden partments. It is hypothesized that the runoff from such developments should carry more pollution than that from the same number of housing units on separate plots, because the runoff is conveyed directly to drainage channels rather than being drained across lawns and gardens, which may absorb part of the pollutants. In order to evaluate this effect, storm event data were obtained from a planned unit development near Hightstown, N. J., using samples taken every 10 minutes throughout the storm at two different storm sewers. Results show heavy metals pollution about what had been anticipated, in accordance with the hypothesis given above, and BOD ammonia and phosphates higher than predicted. The results are significant for areawide water quality planning in metropolitan areas, where projections of future pollution loadings depends upon the land use.  相似文献   

4.
Integrated watershed management (IWM) is a priority, especially in semiarid regions that are concurrently affected by population growth, land use change, soil erosion, and poor governance. In developing countries, IWM is often done without any support tool, scientific data, or deep knowledge of territory characteristics. The aim of this study was to present a case study to apply a decision support tool to prioritize areas for territory management. A simple, quantitative multi‐criteria analysis was applied in a semiarid basin of the Ecuadorian Andes to identify the zones of greatest concern for implementation of resource conservation and management practices at a local and regional scale. In addition to describing the current state of the conditions of this basin, our results suggest scenarios of change in relation to official population projections based on spatial analysis of land use change. Analysis resulted in a scattered distribution of priority values within the watershed, so a hierarchical rule was incorporated to define priorities at the subwatershed (SW) scale. Our analysis identified four SW of very high priority and urgent need to implement management practices. Based on projections of future change due to population growth and land cover change, the number of subbasins that require more attention was doubled. Finally, this study includes zones for management or conservation of the land, according to the Sustainable Development Goals.  相似文献   

5.
ABSTRACT: The Hydrologic Simulation Program‐Fortran (HSPF) was calibrated and used to assess the future effects of various land development scenarios on water quality in the Polecat Creek watershed in Caroline County, Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed stream flow and water quality data collected at the watershed outlet and the outlets of two sub water sheds. Using the county's Comprehensive Plan, land use scenarios were developed by taking into account the trends and spatial distributions of future development. The simulation results for the various land use scenarios indicate that runoff volume and peak rate increased as urban areas increased. Urbanization also increased sediment loads mainly due to increases in channel erosion. Constituent loads of total Kjeldal nitrogen, orthophosphorus, and total phosphorous for Polecat Creek watershed slightly decreased under future development scenarios. These reductions are due to increases in urban areas that typically contribute smaller quantities of nitrogen and phosphorous, as compared to agricultural areas. However, nitrate loads increased for the future land use scenarios, as compared to the existing land use. The increases in nitrate loads may result from increases in residential land and associated fertilizer use and concurrent decreases in forested land. The procedures used in this paper could assist local, state, and regional policy makers in developing land management strategies that minimize environmental impacts while allowing for future development.  相似文献   

6.
ABSTRACT: Recent regulations require impact statements for major water development projects, including reservoirs that will be used for water supply, recreation, and pollution control. A water quantity/quality model was developed and used for making water quality projections of a proposed reservoir in Montgomery County, Maryland. The study area is uncommon in that there is an extensive water quality data base. The results indicate that land use changes will have a significant effect on water quality and that the proposed reservoir will improve the quality of the surface waters downstream from the reservoir. A major effect of land use changes is the increase in the variability of water quality.  相似文献   

7.
The relatively scarcity of flat or moderately sloping land in Central Appalachia make reclaimed surface mined lands attractive for agricultural uses. A reclaimed surface coal mine in southern West Virginia was placed under grazing management during the 1984 and 1985 growing seasons. Discharge was collected from summer-grazed watersheds of about 2.8 ha and 8.9 ha and analyzed, by the membrane-filtration method, for fecal coliforms (FC). Prior to grazing, in 1984, FC counts were < 20/100 ml. During the grazing season, FC ranged from <0/100 ml to> 1000/100 ml in 1984 and from 0/100 ml to > 2500/100 ml in 1985. FC counts remained high during warm periods for several months after grazing ceased. It was concluded that the bacteriological quality of receiving streams was impacted by grazing the reclaimed area and recommended standards for point sources were often exceeded; however, the FC counts did not appear to be any greater than what would have been expected from grazed, undisturbed areas. Reclaimed surface mine areas in Appalachia have the potential to be a valuable “flat land” resource and grazing appears to be an alternative post mine land use that affects bacteriological water quality in a similar manner as “natural” pastures. However, good management practices may be necessary to avoid bacterial contamination of adjacent bodies of water.  相似文献   

8.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

9.
A resource survey and planning method for parks, reserves, and other environmentally significant areas (ESAs) is presented in the context of a holistic balanced approach to land use and environmental management. This method provides a framework for the acquisition, analysis, presentation, and application of diverse ecological data pertinent to land use planning and resource management within ESAs. Through the independent analysis and subsequent integration of abiotic, biotic, and cultural or ABC information, land areas within an ESA are identified in terms of their relative environmental significance and environmental constraints. The former term encompasses wildlife, historic, and other resource values, while the latter term reflects biophysical hazards and sensitivities, and land use conflicts. The method thus calls for a matching of an ESA's distinctive attributes with appropriate land use and institutional arrancements through an analysis of available acts, regulations, agencies, and other conservation and land use management mechanisms. The method culminates with a management proposal showing proposed park or reserve allocations, buffer areas, or other land use controls aimed at preserving an ESA's special ecological qualities, while providing for resource development. The authors suggest that all resource management decisions affecting ESA's should be governed by a philosophical stance that recognizes a spectrum of broad land use types, ranging from preservation to extractive use and rehabilitation.  相似文献   

10.
Impact of Urban Sprawl on Water Quality in Eastern Massachusetts,USA   总被引:5,自引:0,他引:5  
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.  相似文献   

11.
The Meridian Township Land Preservation Programme is the first community-sponsored, open space and natural areas preservation programme in Michigan using ecological principles in the ranking of properties for acquisition. The programme was established through a collaborative, multi-stakeholder effort that resulted in a model ordinance, operating procedures, guidelines for landowners to nominate their properties for consideration, and a set of criteria for property selection. The screening criteria include ecological value, natural or functional value, parcel size, surrounding land use, environmental quality, and aesthetic value. The criteria were developed to reflect principles established by landscape ecology and land conservation objectives to maintain a maximum degree of biodiversity and to develop, manage and maintain ecological infrastructure through management of protected areas. The programme is entirely funded through a local millage, which will raise nearly $10 million over 10 years. The target for acquisition of open space is approximately 10% of the currently undeveloped parcels in the township.  相似文献   

12.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. Nitrate concentrations were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Nitrate-N concentrations were highest in cave streams draining the dairy and a cave stream draining an area of pasture where cattle congregate for shade and water. The dairy contributed about 60 to 70 percent of the nitrogen load increase in the study section of the cave system. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource.  相似文献   

13.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

14.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

15.
Due to environmental constraints and reactive water management practices, water shortages exist across the Everglades ecosystem. A growing human population and continued wetlands damage and loss decrease the system's ability to provide water for sustained natural areas and for human uses. 'The Restudy' is an $8 billion plan to restore the Everglades while also continuing to provide water storage for urban and agricultural areas. The Restudy proposes a mix of water storage systems to provide for the predicted future growth in water demand. This mix is purported to be the most cost-efficient at providing water supplies, within the constraints of unchanged agricultural and urban land use. However, a sensitivity analysis of the Restudy's cost equation reveals that the total cost of water storage systems is influenced by real estate, land acquisition and water treatment costs. The interaction of land use and agricultural policies can affect these cost factors, and can change the relative cost-efficiency between storage systems. Real estate and land acquisition costs are affected by several 1996 Farm Bill provisions, which influence the cost of aboveground water storage systems versus Aquifer Storage and Recovery systems. The Governor's Commission for a Sustainable South Florida recommendations also influence the water storage options available to the Restudy. Due to the Restudy's initial assumptions and constraints, it may not advocate the most economically and ecologically sound remediation.  相似文献   

16.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

17.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   

18.
Our research focuses on the linkage between land use planning policy and the spatial pattern of exposure to air toxics emissions. Our objective is to develop a modeling framework for assessment of the community health risk implications of land use policy. The modeling framework is not intended to be a regulatory tool for small-scale land use decisions, but a long-range planning tool to assess the community health risk implications of alternative land use scenarios at a regional or subregional scale. This paper describes the development and application of an air toxic source model for generating aggregate emission factors for industrial and commercial zoning districts as a function of permitted uses. To address the uncertainty of estimating air toxics emission rates for planned general land use or zoning districts, the source model uses an emissions probability mass function that weights each incremental permitted land use activity by the likelihood of occurrence. We thus reduce the uncertainty involved in planning for development with no prior knowledge of the specific industries that may locate within the land use district. These air toxics emission factors can then be used to estimate pollutant atmospheric mass flux from land use zoning districts, which can then be input to air dispersion and human health risk assessment models to simulate the spatial pattern of air toxics exposure risk. The model database was constructed using the California Air Toxics Inventory, 1997 US Economic Census, and land assessment records from several California counties. The database contains information on more than 200 air toxics at the 2-digit Standard Industrial Classification (SIC) level. We present a case study to illustrate application of the model. LUAIRTOX, the interactive spreadsheet model that applies our methodology to the California data, is available at http://www2.bren.ucsb.edu/~mwillis/LUAIRTOX.htm.  相似文献   

19.
There is an increasing need for improved process‐based planning tools to assist watershed managers in the selection and placement of effective best management practices (BMPs). In this article, we present an approach, based on the Water Erosion Prediction Project model and a pesticide transport model, to identify dominant hydrologic flow paths and critical source areas for a variety of pollutant types. We use this approach to compare the relative impacts of BMPs on hydrology, erosion, sediment, and pollutant delivery within different landscapes. Specifically, we focus on using this approach to understand what factors promoted and/or hindered BMP effectiveness at three Conservation Effects Assessment Project watersheds: Paradise Creek Watershed in Idaho, Walnut Creek Watershed in Iowa, and Goodwater Creek Experimental Watershed in Missouri. These watersheds were first broken down into unique land types based on soil and topographic characteristics. We used the model to assess BMP effectiveness in each of these land types. This simple process‐based modeling approach provided valuable insights that are not generally available to planners when selecting and locating BMPs and helped explain fundamental reasons why long‐term improvement in water quality of these three watersheds has yet to be completely realized.  相似文献   

20.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号