首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: A three-year study has been conducted on a 4.6 mile stretch of the Saddle River near Lodi, New Jersey. The primary objectives of this investigation were (1) to provide baseline information on the concentration and distribution of heavy metals in bottom sediments of the Saddle River; (2) to qualitatively evaluate which parameters affect this distribution; and (3) to determine the effect of urbanization on the concentration and distribution of these materials. Significant enrichments of several heavy metals were observed in bottom sediments of the lower Saddle River near Lodi, New Jersey, as compared to the upper Saddle River. Attempts to correlate metal concentrations in bottom sediments with chemical-oxygen demand were not successful in demonstrating a relationship between these two factors. Metal concentrations were found to be strongly dependent upon particle size. In general, metal concentrations in bottom sediments increased with decreasing partical diameter. However, metals enrichment was observed to be considerably greater in the larger sediment fractions studied (>420μ) than the smaller sediment fractions as one proceeded downstream through the urban area. Since the larger sediment fractions are least effected by scour and transport they may best reflect the effect of urbanization on the distribution of heavy metals over an extended period of time at a given location.  相似文献   

2.
ABSTRACT: A study has been conducted for the past two years on a 4.6 mile stretch of the Saddle River near Lodi, New Jersey. The primary objectives of this study were two fold; initially, the amounts of various heavy metals being contributed to the Saddle River by stormwater runoff, rainfall, and individual tributaries, etc., were investigated to better delineate the distribution of various sources of heavy metals to the aquatic environment. Secondly, a series of benthal deposits from the Saddle River were analyzed to determine the fate of these metals once introduced into the receiving stream. A mass balance analysis of heavy metals in the Saddle River was performed to determine the amount of these materials contributed from unrecorded sources. The results of this study seemed to demonstrate the importance of considering the potential scouring of river sediments as a secondary source of metals in determinations of this type. The distribution of metals in precipitation samples collected in this study was found to be similar to that in runoff, with lead and zinc predominating. Relative concentrations of metals in precipitation as compared to those of stormwater were relatively insignificant. Metal concentrations of bottom sediments were found to vary considerably from sample to sample.  相似文献   

3.
Earthworms in general are tolerant to many chemical contaminants including heavy metals and organic pollutants in soil and can bio-accumulate them in their tissues. Earthworms species like Eisenia fetida, Eisenia tetraedra, Lumbricus terrestris, Lumbricus rubellus and Allobophora chlorotica have been found to remove heavy metals (Cd, Pb, Cu, Hg, etc.) pesticides and lipophilic organic micropollutants like the polycyclic aromatic hydrocarbons (PAH) from the soil. They ‘absorb’ the dissolved chemicals through the moist ‘body wall’ in the interstitial water and also ‘ingest’ by mouth while the soil passes through the gut. They either ‘bio-transform’ or ‘biodegrade’ the chemical contaminants rendering them harmless in their bodies. Meanwhile the quality of the soil is improved significantly in terms of physical, chemical and biological properties as the worms thoroughly upturn and disperse the soil, ingest large volumes of soil and excrete nutritive materials (NKP and micronutrients) in the form of ‘vermicasts’ along with millions of beneficial soil microbes including nitrogen fixers.  相似文献   

4.
ABSTRACT: Starting in 1998, a study was conducted to characterize storm water quality from predominant land use types in a coastal watershed along the south central coast of Florida, namely citrus, pasture, urban, natural wetland, row crop, dairy, and golf courses. Sixty‐three sampling sites were located at strategic points on drainage conveyances for each of seven specific land use areas. Runoff samples were collected following storm events that met defined rainfall criteria for a period of 30 months. Nitrogen (N), phosphorus (P), heavy metals, pesticides, and other water quality parameters were determined, and the results were analyzed to compare and characterize land uses as relative sources for these constituents in runoff. Results showed that runoff from most land use types had low dissolved oxygen concentration and that sediment and nutrient concentrations were closely related to land use, particularly to the amount of fertilizer applied in each land use. Among the eight heavy metals tested, copper was the most frequently detected and was mostly associated with runoff from citrus and golf course land uses. High levels of arsenic were also detected in golf course runoff. The most frequently detected pesticide was simazine from citrus. The information and methodologies presented may facilitate pollution source characterization and ecological restoration efforts.  相似文献   

5.
杭州城区河道底泥重金属污染及潜在生态风险评价   总被引:2,自引:0,他引:2  
对杭州城区34条河道45个点位河道底泥进行采样,分析了pH及汞、砷、铅、铬、镉、铜、锌、镍等重金属含量,并进行污染及潜在生态风险评价。结果表明,监测点位的底泥为中性偏碱性,重金属含量分布不均,且范围波动很大,部分河道底泥重金属中汞、铅、镉、铬、锌、镍等有不同程度的超标,少数河道镉、铬、锌污染严重;按《农用污泥中污染物控...  相似文献   

6.
Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.  相似文献   

7.
Concentrations of nutrients and heavy metals in streambank legacy sediments are needed to estimate watershed exports and to evaluate against upland inputs. Concentrations of nutrients and heavy metals were determined for legacy sediments in 15 streambanks across northeastern Maryland, southeastern Pennsylvania, and northern Delaware. Samples were collected from multiple bank depths from forested, agricultural, urban, and suburban sites. Analyses were performed for fine (<63 μm) and coarse sediment fractions. Nutrient and heavy metal concentrations were significantly higher in fine than coarse legacy sediments and water extractable nutrient concentrations were significantly greater for fine sediments. Nutrient and heavy metal concentrations were highest in streambank legacy sediments associated with urban land use, but few differences were found with bank depth. Total N (40–3,970 mg/kg) and P (25–1,293 mg/kg) and bioavailable P (0.25–48.8 mg/kg) concentrations for legacy sediments were lower than those for upland soils. This suggests that legacy sediments could serve as sink or source of N and P depending on the redox conditions and stream water nutrient concentrations. However, despite low concentrations, caution should be exercised since streambank erosion and legacy sediment mass loadings could be high, these sediments are in immediate proximity of aquatic ecosystems, and biogeochemical transformations could result in release of the nutrients.  相似文献   

8.
At the new Marais des Cygnes National Wildlife Refuge in Linn County, Kansas, and Bates County, Missouri, USA, we evaluated long-lived contaminants before acquisition of the land for the refuge. We sampled sediments at 16 locations and fish at seven locations. The samples were analyzed for metals and for chlorinated hydrocarbon compounds. Selected sediment samples also were analyzed for aliphatic hydrocarbons. Arsenic concentrations in sediment samples from six locations were elevated compared to US norms, but arsenic was not detected in any fish composite. Mercury concentrations in largemouth bass from two locations were comparable to the 85th percentile concentrations in nationwide fish collections. Most sediment concentrations of other metals were unlikely to have detrimental effects on biota. No chlorinated hydrocarbons were detected in any sediment sample. Chlordane compound concentrations in fish composites from two sites at the eastern end of the sampling area were 0.127 and 0.228 μg/g wet weight, respectively, which are high enough to cause concern. Most aliphatic hydrocarbons detected were found at low concentrations and probably were natural in origin. We concluded that there are no serious contaminants concerns within the project area, but past use of arsenical pesticides may mean a legacy of elevated soil arsenic levels in parts of the area and some use of banned pesticides such as chlordane and DDT likely is still occurring near the refuge.  相似文献   

9.
Several submerged barges were recently removed from the Passaic River, New Jersey, USA, in two areas (areas 1 and 2) where contaminated sediments are known to exist. During removal of the single barge in area 1, elevated turbidity levels and chemical parameters were measured. Greater increases were measured in area 2, where several barges were removed. In both areas, water column concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and several metals exceeded one or more water quality criteria; turbidity levels in area 2 also exceeded regulatory criteria. Potential chemical bioaccumulation from the water column into residential aquatic receptors was estimated using standard models and assumptions. The modeled results predicted that steady-state tissue concentrations of bioaccumulative chemicals would not occur as a result of the brief increase in water column concentrations that occurred during barge removal but that metals and PCDD/Fs could bioaccumulate to levels that exceed regulatory ecological criteria during long-term sediment disturbance activities. In addition, based on some simplistic assumptions regarding settling of suspended sediments, we estimate that chemical bioaccumulation from surface sediments into the food web could result in substantial increases in PCDD/F body burdens in the benthic forage fish, mummichog. Our findings are consistent with the limited number of field studies that have measured increased body burdens of bioaccumulative chemicals following dredging. We suggest that, prior to consideration of extensive dredging as a remedial alternative for any river system, the potential significant and long-term impacts on the food web must be evaluated.  相似文献   

10.
Speciation studies revealed that the heavy metals in sediments of Lake Victoria Basin, Kenya, are highly bioavailable with % average values of 73.3, 66.9, 65.6, 57.1 and 55.8 for Zn, Pb, Fe, Cu and Cd respectively being recorded. The high percentages were attributed to the anthropogenic sources of these metals upstream and within the shores of Lake Victoria. Large loads of floating organic matter were witnessed on the surface of water, and this most likely contributed to the high % of organic matter of 7.58 recorded in this study. High % of organic matter in sediments contributes significantly to bioavailability of heavy metals in sediments.  相似文献   

11.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   

12.
Due to anthropogenic inputs, elevated concentrations of metals frequently occur in aquatic sediments. In order to make defensible estimates of the potential risk of metals in sediments and/or develop sediment quality criteria for metals, it is essential to identify that fraction of the total metal in the sediments that is bioavailable. Studies with a variety of benthic invertebrates indicate that interstitial (pore) water concentrations of metals correspond very well with the bioavailability of metals in test sediments. Many factors may influence pore water concentrations of metals; however, in anaerobic sediments a key phase controlling partitioning of several cationic metals (cadmium, nickel, lead, zinc, copper) into pore water is acid volatile sulfide (AVS). In this paper, we present an overview of the technical basis for predicting bioavailability of cationic metals to benthic organisms based on pore water metal concentrations and metal-AVS relationships. Included are discussions of the advantages and limitations of metal bioavailability predictions based on these parameters, relative both to site-specific assessments and the development of sediment quality criteria.  相似文献   

13.
Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.  相似文献   

14.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   

15.
An assessment of the heavy metal content and biological pollution burden of an abattoir dumpsite, an automobile carwash, the Ikpoba River, and a private water borehole located near the abattoir dumpsite was conducted in Benin City in Southern Nigeria, during the rainy and dry seasons. The water samples’ pH was lower than the permissible values, with the river water displaying color and possessing a slight odor. Iron concentrations exceeded the permissible limits for drinking water at all four of the sampling stations in the study area, although not in samples collected from the control station, station 5, a public water borehole that is located some distance away. Lead values were higher than drinking water standards in the samples collected from stations 1 through 4, with some exceptions during the rainy season. Copper, nickel, arsenic, chromium, and aluminum were detected in three out of the four sampling stations located within the study area. However, these metals were detected at levels that were within regulatory limits. The detection of three metals (iron, lead, and zinc) within the study area at levels exceeding drinking water limits suggested that a complete cycle of movement of pollutants into the sampling stations had occurred. Significant biological presences were also detected, as the Ikpoba River water had a standard plate count (SPC) of 130 most probable number (MPN) and a 22 MPN presumptive coliform count (PCC) or 22 MPN. However, Escherichia coli (E. coli) confirmatory tests recorded less than 2 MPN in both seasons. The study has shown that the quality of water in the river may be compromised by effluent discharges from the dumpsite and the carwash channel. Therefore, this situation requires more stringent enforcement of local environmental laws and maintenance of safe distances between domestic and industrial waste sources and domestic or private water wells.  相似文献   

16.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

17.
Sediments may act as both a carrier for and a potential source of contaminants such as toxic organics in aquatic environments. This study investigated the spatial distribution of the pesticide DDT [1,1, 1-trichloro-2,2-bis(p-chlorophenyl)ethane] in sediments from the Cedar and Ortega Rivers located in the lower St. Johns River basin, Florida, USA, using field measurements and three-dimensional kriging analysis. High DDT concentrations were found near the junction of the Cedar and Ortega Rivers and at the north end of the Ortega River in the upper 0.5 m of the sediments, indicating that the sediment was enriched with DDT in the top layer although use of this chlorinated compound was banned in 1972. Further study revealed that the influence of sediment grain size or texture on DDT contamination was negligible in this river system and no linear correlations existed among DDT and its metabolites such as DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] and DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene]. Comparison of three-dimensional distribution of DDT content to the Florida sediment quality assessment guideline or probable effect level (PEL) showed several "hot spots" in the Ortega River sediments, where DDT contents exceeded the PEL value of 4.78 microg kg(-1). Such contamination may pose a significant hazard to aquatic life.  相似文献   

18.
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water‐quality data showed higher turbidity and specific conductance in the reaches with low‐quality mussel assemblages compared to reaches with high‐quality mussel assemblages. Discrete water‐quality samples showed higher major ions and metals concentrations in the low‐quality reach. Base‐flow samples contained high major ion and metal concentrations coincident to low‐quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high‐quality mussel populations occur.  相似文献   

19.
/ Aquatic resources in Soda Butte Creek within Yellowstone National Park, USA, continue to be threatened by heavy metals from historical mining and milling activities that occurred upstream of the park's boundary. This includes the residue of gold, silver, and copper ore mining and processing in the early 1900s near Cooke City, Montana, just downstream of the creek's headwaters. Toxicity tests, using surrogate test species, and analyses of metals in water, sediments, and macroinvertebrate tissue were conducted from 1993 to 1995. Chronic toxicity to test species was greater in the spring than the fall and metal concentrations were elevated in the spring with copper exceeding water quality criteria in 1995. Tests with amphipods using pore water and whole sediment from the creek and copper concentrations in the tissue of macroinvertebrates and fish also suggest that copper is the metal of concern in the watershed. In order to understand current conditions in Soda Butte Creek, heavy metals, especially copper, must be considered important factors in the aquatic and riparian ecosystems within and along the creek extending into Yellowstone National Park.KEY WORDS: Mining; Metals; Toxicity; Biomonitoring; Copper; Yellowstone National Park  相似文献   

20.
Sectorial approach for monitoring heavy metal pollution in rivers has failed to report realistic pollution status and associated ecological and human health risks. The increasing spread of heavy metals from different sources and emerging risks to human and environmental health call for reexamining heavy metal pollution monitoring frameworks. Also, the sources, spread, and load of heavy metals in the environment have changed significantly over time, requiring consequent modification in the monitoring frameworks. Therefore, studies on heavy metal monitoring in rivers conducted in the last decade were evaluated for experimental designs, research frameworks, and data presentations. Most studies (∼99%) (i) lacked inclusiveness of all environmental compartments; (ii) focused on “one pollutant – one/two compartment” or sometimes “one pollutant – one compartment – one effect” approach; and (iii) remained “data-rich but information poor.” An ecological approach with integrative system thinking is proposed to develop a holistic approach for monitoring river pollution. It is visualized that heavy metal monitoring, risk analyses, and water management must incorporate tracking pollutants in different environmental compartments of a river (water, sediment, and floodplain/bank soil) and consider correlating it with riverbank land use. The systems-based pollution monitoring and assessment studies will reveal the critical factors that drive heavy metals pollutant movement in ecosystems and associated potential risks to the environment, wildlife, and humans. Also, water quality and pollution indexing tools would help better communicate complex pollution data and associated risks among all stakeholders. Therefore, integrating systems approaches in scientific- and policy-based tools would help sustainably manage the health of rivers, wildlife, and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号