首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Two computer models, the Continuous Stormwater Pollution Simulation System (CSPSS) and the Computer Optimized Storm-water Treatment Program (COST), were developed to aid in performing water quality planning. This paper describes COST and its site specific applications to the Philadelphia urban area, using the results from an updated CSPSS receiving water simulation. COST provides a planning and conceptual design tool to identify the economically optimum combination of wet weather and dry weather pollution abatement alternatives. Economic analysis procedures incorporated are based on production theory and marginal cost analysis. This study demonstrates that by transforming BOD removal to reduction in low DO events, using CSPSS results, the benefits associated with pollutant removal can be accounted for explicitly by COST simulations. This is important because a pound of BOD removed from combined sewer overflow may be of more benefit to the receiving water than a pound of BOD removed from urban stormwater runoff. The selection of a pollution control strategy is often a difficult decision which should consider social, political, financial, and regulatory factors. It is suggested that such a selection can be based on evaluating the tradeoffs between total annual costs and receiving water improvements, as determined using the COST and CSPSS programs.  相似文献   

2.
This paper reviews progress on urban storm water management and pollution control, with emphasis on non- and low-structurally intensive techniques along with the total system approach encompassing control-treatment. Many of the U.S. Environmental Protection Agency's demonstration-evaluation projects are presented to exemplify: Land Management Techniques, i.e., land use planning, best use of natural drainage, dual use of retention and drainage facilities required for flood control designed concurrently or retrofitted for pollution control, porous pavement, surface sanitation, and chemical use control; Collection Systems Control, i.e., catchbasin cleaning, flow regulators (including swirl and helical devices), and the new concepts of elimination or reduction of unauthorized cross-connections, in-channel/conduit storage and/or other forms of storage for bleed-back to existing treatment plants; Storage including in-receiving water storage; Treatment, i.e., physical/chemical, disinfection, and a treatment-control planning and design guidebook; Sludge and Solids Residue from Treatment; and Integrated Systems, i.e., storage/treatment, dual-use wet-weather flow/dry-weather flow facilities, and reuse of stormwater for nonpotable purposes. Recommendations for the future in the areas of: control based on receiving water impacts, toxics characterization and their control, sewer system cross-connections, integrated stormwater management, and institutional/sociological/economic conflicts are also presented.  相似文献   

3.
ABSTRACT: A representative city in an arid zone, such as the Kingdom of Saudi Arabia, is instrumented to determine the quantity and quality of storm runoff with a view to investigating the possibility of using it for industrial and agricultural purposes after appropriate treatments. In an urban watershed in the City of Dhahran, Saudi Arabia, quantity and quality of storm runoff had been monitored for the past six years, and the average annual runoff that can be harvested was determined. The quality of runoff is well within the range of possible reuse schemes, most notably for restricted irrigation. Treatment schemes for the harvested water are proposed.  相似文献   

4.
: This paper presents solutions to the one-dimensional, transient conservation of mass equations for the coupled biochemical oxygen demand-dissolved oxygen (BOD-DO) reactions, based on the principle of superposition, for continuously discharging plane sources. The solutions are applied within the framework of a continuous simulation model to allow the derivation of water quality frequency curves and frequency histograms of consecutive hourly dissolved oxygen violations, for any desired standard. Receiving water response is determined for waste inputs from urban wet weather, dry weather, and upstream sources. An application to Des Moines, Iowa, and Des Moines River indicated that urban storm water impacts on the stream can be masked in the cumulative frequency curve representation, but the benefits of storm water control are clearly shown in frequency histograms of the duration of consecutive stream standard violations.  相似文献   

5.
ABSTRACT: The Illinois v. Milwaukee Federal District Court decision is the most far reaching application yet of the federal common law of nuisance to interstate water pollution conflicts. Although a Federal Appelate Court recently rescinded part of the district court decision, Milwaukee must still upgrade its metropolitan sewage system to a level beyond that required by federal and state regulations. The improvements must be completed with or without federal aid. The case points out the apparent inability of the Clean Water Act, the most comprehensive federal legislation affecting the nation's water quality, to deal with certain interstate water quality conflicts. The Milwaukee decision could set a precedent for similar settlements elsewhere which may in turn affect the U.S. Environmental Protection Agency's water quality clean up program. A more integrated, ecosystem conscious approach to management of shared water resources (e.g., the Great Lakes) would help reduce the need for court decisions like Illinois v. Milwaukee.  相似文献   

6.
ABSTRACT: The history of the Milwaukee water pollution abatement program is examined as a case study to investigate the costs of conflicting environmental policy. The recent U.S. Supreme Court decision concerning the Milwaukee case is described as a milestone in U.S. water pollution abatement policy which will help preclude the type of environmental policy conflict which has been found to be so costly to Milwaukee. The implications to U.S. water pollution abatement policy of the 13-year history of conflict in Milwaukee are presented.  相似文献   

7.
ABSTRACT: Turfgrass systems are one of the most intensively managed land uses in the United States. Establishment and maintenance of high quality turfgrass usually implies substantial inputs of water, nutrients, and pesticides. The focus of this work was to quantify the concentration and loading of a typically maintained municipal turfgrass environment on surface water. Water quantity and quality data were collected from a golf course in Austin, Texas, and analyzed for a 13‐month period from March 20, 1998, to April 30, 1999. Twenty‐two precipitation events totaling 722 mm, produced an estimated 98 mm of runoff. Nutrient analysis of surface runoff exiting the course exhibited a statistically significant (p < 0.05) increase in median nitrate plus nitrite nitrogen (NO3+NO2‐N) concentration compared to runoff entering the course, a statistically significant decrease in ammonia nitrogen (NH4‐N), but no difference in orthophosphate (PO4‐P). During the 13‐month period, storm runoff contributed an estimated 2.3 kg/ha of NO3+NO2‐N and 0.33 kg/ha of PO4‐P to the stream. Storm flow accounted for the attenuation of 0.12 kg/ha of NH4‐N. Baseflow nutrient analysis showed a statistically significant increase in median NO3+NO2‐N, a significant reduction in NH4‐N, and no change in PO4‐P. Estimated NO3+NO2‐N mass in the baseflow was calculated as 4.7 kg/ha. PO4‐P losses were estimated at 0.06 kg/ha, while 0.8 kg/ha of NH4‐N were attenuated in baseflow over the study period. Even though nutrient concentrations exiting the system rarely exceeded nutrient screening levels, this turfgrass environment did contribute increased NO3+NO2‐N and PO4‐P loads to the stream. This emphasizes the need for parallel studies where management intensity, soil, and climate differ from this study and for golf course managers to utilize an integrated management program to protect water quality while maintaining healthy turfgrass systems.  相似文献   

8.
ABSTRACT: A combined sewer system is a complex system subject to the dynamic stimuli of precipitation, runoff pollution loads, and sanitary wastes. The system response is a random series of pollutant loads to a receiving water. In many localities, these discharges create considerable water quality problems. Mathematical models can and have played a useful role in predicting the behavior of combined sewer systems and evaluating abatement strategies. Based on the authors' experiences over the past several years, this paper explores some of the positive and negative aspects of using deterministic mathematical models to simulate the behavior of combined sewer systems. A case study follows a discussion on modeling objectives, limitations of modeling, model selection, establishing model credibility, and many other considerations necessary in modeling and simulating these systems.  相似文献   

9.
ABSTRACT: Urbanization of a watershed degrades both the form and the function of the downstream aquatic system, causing changes that can occur rapidly and are very difficult to avoid or correct. A variety of physical data from lowland streams in western Washington displays the onset of readily observable aquatic-system degradation at a remarkably consistent level of development, typically about ten percent effective impervious area in a watershed. Even lower levels of urban development cause significant degradation in sensitive water bodies and a reduced, but less well quantified, level of function throughout the system as a whole. Unfortunately, established methods of mitigating the downstream impacts of urban development may have only limited effectiveness. Using continuous hydrologic modeling we have evaluated detention ponds designed by conventional event methodologies, and our findings demonstrate serious deficiencies in actual pond performance when compared to their design goals. Even with best efforts at mitigation, the sheer magnitude of development activities falling below a level of regulatory concern suggests that increased resource loss will invariably accompany development of a watershed. Without a better understanding of the critical processes that lead to degradation, some downstream aquatic-system damage is probably inevitable without limiting the extent of watershed development itself.  相似文献   

10.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

11.
ABSTRACT: A demonstration and efficiency evaluation project was conducted for the flow balancing method (FBM) facility, a combined sewer overflow (CSO) storage facility at Fresh Creek in Brooklyn, New York City. The FBM is a curtained tank located directly in the receiving water that captures CSO. The CSO floats on top of and displaces Fresh Creek saltwater before it is pumped back to the publicly owned treatment works (POTW). The facility was a pilot scale subject to the full CSOs. The purpose of the project was to show how the FBM can withstand severe weather and tidal conditions and to develop a procedure for estimating CSO control efficiency (percentage of CSO pumped back to the POTW). The procedure proved successful and incorporated specific conductivity as a tracer in mass balance equations. These equations provided estimates of the net percent, capture-pumpback of the CSO using the FBM, including the amount of Fresh Creek water that was included in the pumpback to the P01W. The efficiency was directly related to the volume of the CSO and the pumpback rate and ranged from a low of 3.3 percent for the largest event to a high of 76.9 percent for the smallest event. Recent FBM enlargement should result in substantial increases in CSO control. The FBM facility has operated successfully for over five years, withstanding ice storms, near hurricane force winds and up to 7 ft tidal range.  相似文献   

12.
ABSTRACT: Public Law 92–00 has mandated the need for evaluating the impact of nonpoint source pollution on receiving water quality, primarily through Section 208 Areawide Planning. The Management of Urban Non-Point Pollution (MUNP) model was developed to estimate the accumulation of eight non-point pollutants on urban streets, their removal by both rainfall and street sweeping operations. The model can simulate the following pollutants: total solids or sediment-like material, volatile solids, five-day biochemical oxygen demand, chemical oxygen demand, Kjeldahl nitrogen, nitrates, phosphates, and total heavy metals. The simulated results can be used for investigation of non-point pollution management alternatives. The model is capable of reflecting variation in such diverse factors as physical and chemical characteristics of accumulated pollutants, land use characteristics, rainfall characteristics, street sweeper characteristics, roadway characteristics, and traffic conditions. By using mean estimates of many input variables for large segments of a city, the MUNP model could be used to quickly assess the magnitude of pollutants annually entering receiving waterways due to nonpoint source pollution alone. If the results indicate that non-point pollution loadings are sizeable and require futher analysis, the MUNP model could be used to define the specific nonpoint source pollution areas within a city. Hypothetical locations and actual rainfall data for Washigton D.C. were used to demonstrate some capabilities of the MUNP model.  相似文献   

13.
ABSTRACT: A review of methods for planning-level estimates of pollutant loads in urban stormwater focuses on transfer of charac. teristic runoff quality data to unmonitored sites, runoff monitoring, and simulation models. Load estimation by transfer of runoff quality data is the least expensive, but the accuracy of estimates is unknown. Runoff monitoring methods provide best estimates of existing loads, but cannot be used to predict load changes resulting from runoff controls, or other changes of the urban system. Simulation models require extensive calibration for reliable application. Models with optional formulations of pollutant build up, washoff, and transport can be better calibrated and the selection of options should be based on a statistical analysis of calibration data. Calibrated simulation models can be used for evaluation of control alternatives.  相似文献   

14.
ABSTRACT: A mesoscale meteorological model, a surface hydrology model, and a ground-water hydrology model are linked to simulate the hydrographic response of a large river basin to a single storm. Synoptic climatology is employed to choose a representative hydro-climatic event. The mesoscale meteorological model uses three nested domains to simulate relatively high-resolution precipitation over a sub-basin of the Susquehanna River Basin. The hydrology models simulate surface runoff and ground-water baseflow using both analyzed and simulated precipitation. The hydrologic abstractions are handled using both Curve Number and Green-Ampt routines. To support the linkage of the numerical models, special attention is given to data resampling and reprojection. The mesoscale meteorological model simulation captures the spatial and temporal structure of the storm event, while the hydrology models represent the timing of the event well. The Curve Number method generates a realistic hydrograph with both analyzed and simulated precipitation. In contrast, the hydrographic response generated by the Green-Ampt routine is inferior. Several interrelated factors contribute to these results, including: the nature of the precipitation event chosen for the experiment; the tendency of the mesoscale meteorological model to underpredict low intensity, widespread precipitation in this case; and the influence of the surface soil-texture characteristics on infiltration rates.  相似文献   

15.
ABSTRACT: A model for estimating the probability of exceeding groundwater quality standards at environmental receptors based on a simple contaminant transport model is described. The model is intended for locations where knowledge about site-specific hydrogeologic conditions is limited. An efficient implementation methodology using numerical Monte Carlo simulation is presented. The uncertainty in the contaminant transport system due to uncertainty in the hydraulic conductivity is directly calculated in the Monte Carlo simulations. Numerous variations of the deterministic parameters of the model provide an indication of the change in exceedance probability with change in parameter value. The results of these variations for a generic example are presented in a concise graphical form which provides insight into the topology of the exceedance probability surface. This surface can be used to assess the impact of the various parameters on exceedance probability.  相似文献   

16.
ABSTRACT: A general model of the policy implementation process is utilized to facilitate a discussion of the way Section 208 of PL 92-500 is being carried out on an areawide basis. A study of four “208 areas” in the “New York-Philadelphia corridor” highlights the operation of several variables used in the model. The varying political and socioeconomic conditions in geographic areas which have similar water quality problems are leading to the evolution of vastly different implementing structures, or institutional arrangements. The analysis suggests that these differences may have important implications for the success of the program in each of these areas. A major underlying theme is that such problems are characteristic of the 208 process nationwide and reflect general difficulties associated with managing water quality in a federal system.  相似文献   

17.
Wastewater irrigation is a re-emerging method for dealing with an area's wastewater, particularly in Northern temperate climates in the U.S. Muskegon, Michigan, typical of a medium-sized Northern urban area, is currently adopting wastewater irrigation to meet its present and future wastewater treatment needs.  相似文献   

18.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

19.
ABSTRACT: Frequent high quantity overflows of combined sewage entering the Mississippi River near the city of Red Wing, Minnesota, have degraded water quality and caused concern among federal and state environmental agencies. The city of Red Wing was required to conduct a comprehensive waste control study, as part of the sewer system Construction Grant (Section 201 of PL 92–500), to identify alternative waste control and treatment measures and to recommend the optimum combination of alternatives in terms of both cost and waste control effectiveness. The study involved these basic steps: determination of present and future (year 2020) sanitary flow rates and volumes, storm runoff discharges, frequencies and volumes, and combined sewage bypass volumes; identification of alternative waste control measures; elimination of unfeasible alternatives; detailed analysis of the hydrologic, economic, and waste control feasibility of the promising alternatives; selection of the optimum combination of alternative waste control measures to satisfy the study objectives, and determination of construction priorities for the optimum control measures. Because of an uncertain budget and undetermined conditions of state and federal assistance, the city has not yet selected the optimum waste control measure for its needs. When the decisionmaking process between representatives of the city and the state commences, the optimum combination of waste control alternatives can be easily identified using the results of this study.  相似文献   

20.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号