首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中三角区域已经是我国第四个国家级城市群,也将成为我国经济增长的"第四极"。在经济发展的同时,更需要以节能减排、资源环境等为重点,以实现经济建设与生态文明"双可持续"的协同发展。本文以二氧化硫、氮氧化物、烟(粉)尘为主要大气污染物,对我国中三角区域大气污染物排放进行了详细的分析,并与京津冀、长三角、珠三角、"三区十群"等进行了多方位比较。结果表明,2013年中三角区域二氧化硫排放量为151.7万t,其中工业二氧化硫排放量为140.1万t;氮氧化物排放量为147.2万t,其中工业氮氧化物排放量为93.6万t;烟(粉)尘排放量为81.8万t,其中工业烟(粉)尘排放量为71.4万t。中三角区域二氧化硫、氮氧化物、烟(粉)尘排放量均位于"四极"的第三。中三角区域二氧化硫、氮氧化物、烟(粉)尘单位GDP排放强度分别为25.03t/亿元、24.29 t/亿元、13.50 t/亿元,分别位于"四极"的第一、第二、第二。同时,本文还从经济发展模式、产业结构调整、煤炭消费方式等方面对我国中三角等经济"四极"提出了相关建议。  相似文献   

2.
In the Mediterranean region the intensities and amounts of soil loss and runoff on sloping land are governed by rainfall pattern and vegetation cover. Over a two-year period (1998–1999), six wild species of aromatic and mellipherous plants (Thymus serpylloides subsp. Gadorensis, Thymus baeticus Boiss, Salvia lavandulifolia Vahl., Santolina rosmarinifolia L., Lavandula stoechas L. and Genista umbellata Poiret) were selected for erosion plots to determine their effectiveness in reducing water erosion on hillslopes of the Sierra Nevada Mountain (SE Spain). The erosion plots (including a bare-soil plot as control), located at 1,345 m in altitude, were 2 m2 (2 m × 1 m) in area and had 13% incline. The lowest runoff and soil erosion rates, ranging from 9 to 26 mm yr−1 and from 0.01 to 0.31 Mg ha−1 yr−1, respectively, over the entire study period, were measured under the Thymus serpylloides. Lavandula stoechas L. registered the highest rates among the plant covers tested, runoff ranging from 77 to 127 mm yr−1 and erosion from 1.67 to 3.50 Mg ha−1 yr−1. In the bare-soil plot, runoff ranged from 154 to 210 mm yr−1 and erosion from 4.45 to 7.82 Mg ha−1 yr−1. According to the results, the lowest-growing plant covers (Thymus serpylloides and Salvia lavandulifolia Vahl.) discouraged the soil erosion and runoff more effectively than did the taller and open medium-sized shrubs (Santolina rosmarinifolia L., Genista umbellata Poiret, Thymus baeticus Boiss and Lavandula stoechas L.). Monitoring allowed more direct linkage to be made between plant covers and the prevention of erosion, with implications for sustainable mountain agriculture and environmental protection.  相似文献   

3.
ABSTRACT: Estimates were made of the amounts of selected pesticides entering and leaving Saylorville Reservoir, a new partly filled impoundment on the Des Moines River. Samples were collected at 1– or 2-week intervals at stations above, in, and below the reservoir. Atrazine, alachlor, and cyanazine were found only in the dissolved state, and dieldrin and p, p′ -DDE in both the, dissolved and suspended state. Heptachlor epoxide, p,p-DDT. p, p′ -DDD, 2,4-D, 2,4,5-TP, endrin, lindane, methoxychlor, propachlor, and toxaphene were not detected or were at very low concentrations. Estimated deposition in the reservoir from September 1977 to October 1978 was 281 kg atrazine, 251 kg alachlor, 26 kg cyanazine, 16 kg dieldrin, and 20 kg p, p′ -DDE.  相似文献   

4.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   

5.
Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat conditions in a mosaic of patches of well-established grassed areas and bare, nonvegetated areas. Factors, including soil CO2, CH4, O2, nutrients, and other general soil conditions, were measured in relation to species distribution and grass biomass in the field. Cynodon dactylon was the dominant grass in the established grass areas but was less abundant in the areas bordering the bare areas where Paspalum paspalodes and Sporobolus africanus were common. A number of soil factors measured were significantly correlated with grass biomass and these included Mg, Ca, Zn, Mn, K, temperature, moisture, and CO2. However, a laboratory bioassay using the growth of C. dactylon with soils removed from the landfill indicated that there were no differences in the soils from the bare areas and those that supported high plant biomass. Thus, no nutrient deficiency or chemical toxicity was inherent in the soil in the laboratory. The results of the field investigation and bioassay indicated that soil CO2 as a result of landfill gas infiltration into the root zone was probably the main factor causing bare areas on the landfill where no grass species could colonize and grow and that C. dactylon was more sensitive to elevated soil CO2 than other grass species such as P. paspalodes and S. africanus.  相似文献   

6.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   

7.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

8.
Phleum pratense and Poa pratensis were significantly lower (P ≤ 0.001) on plots with more than 250 ppm copper. Above-ground biomass of Phleum pratense was also significantly lower on plots with copper levels above 250 ppm. Decreased mean grass density was found on plots with pH < 6.4, but the only statistically significant difference was for Juncus balticus, which had increased density on plots with pH < 6.4. In contrast to the clear impacts of trace metals and pH on vegetation, other site characteristics did not alter measured vegetation characteristics.  相似文献   

9.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

10.
This study investigates German news media coverage and PR material of offshore wind stakeholders from industry, politics, science and civil society thoroughly to provide insights about offshore wind benefits and risks communicated frequently and rarely to the public. By comparative analyses, differences between stakeholder and media messages are revealed: while stakeholders strongly focused on the supportive argument relevance of offshore wind for the energy turnaround, the media often discussed the negative impacts higher costs and delays in grid connection. Furthermore, the influence of offshore wind arguments on acceptance is measured within a survey representative of the German population. With these results, it can be assessed how far influential arguments were presented and which messages have been used frequently despite their low impact. Disruptions to viewscapes, limitation of commercial fishing areas, and hazards to shipping proved to be effective arguments to influence offshore wind acceptance – however, they were seldom used.  相似文献   

11.
Abstract: Evaluating the relative amounts of water moving through the different components of the hydrological cycle is required for precise management and planning of water resources. An important aspect of this evaluation is the partitioning of streamflow into surface (quick flow) and base‐flow components. A prior study evaluated 40 different approaches for hydrograph‐partitioning on a field scale watershed in the Coastal Plain of the Southeastern United States and concluded that the Boughton’s method produced the most consistent and accurate results. However, its accuracy depends upon the proper estimation of: (1) the end of surface runoff, and (2) the fraction factor (α) that is function of many physical and hydrologic characteristics of a watershed. Proper identification of the end of surface runoff was accomplished by using a second derivative approach. Applying this approach to 12 years of separately measured surface and subsurface flow data from a field scale watershed (study area) proved to be accurate for 87% of the time. Estimation of the α value was accomplished in this study using two steps: (1) alpha was fitted to individual hydrographs: and, (2) a regression equation that determines these alpha values based on climatological factors (e.g., rainfall, evapotranspiration) was developed. Using these strategies improved the streamflow partitioning method’s performance significantly.  相似文献   

12.
Cities in Bangladesh produce large amounts of solid waste (SW) through various human activities which severely pollutes our native environment. As a result, SW pollutes the three basic environmental elements (air, water, and soil) by increasing pathogenic microbial load, which might be hazardous to public health directly or indirectly. In this study, we conducted 30 samples (i.e., soil, water, and air) collected from areas where municipal solid wastes are dumped (Tangail Sadar Upazila, Bangladesh). All the samples were analyzed to assess bacteriological quality for presumptive viable and coliform count using different agar media. We performed serial dilution 10−3–10−10 times for soil and water samples, and the diluted samples were spread on Mac-Conkey agar and nutrient agar plates. For the air sample, the sterile media containing petri-dish was placed adjacent to the dumpsite of the municipal waste and kept for an hour. Then all the samples were incubated at 37°C overnight for total viable count (TVC) and total coliform count (TCC). Biochemical tests and PCR were performed for the identification of these microorganisms. The antibiogram study was performed to reveal their (identified bacteria) susceptibility against clinically used antibiotics according to the standard disk diffusion technique. The highest bacterial loads were found in the air: TVC 3.273 × 103 and TCC 1.059 × 103 CFU/plate; tube-well water: TVC 8.609 × 103, and TCC 8.317 × 103 CFU/mL; in surface water: TVC 6.24 × 1013 CFU/mL and TCC 2.2 × 1012 CFU/mL; in soil: TVC 2.88 × 1011 and TCC 1.02 × 1011 CFU/g, respectively. Microbes from SW can be transmitted through air, dust particles, or flies, and here we found an average of 1120 microbes spread over 63.61 cm2 area per hour. Eight bacterial isolates (Pseudomonas spp., Klebsiella spp., E. coli, Proteus spp., V. cholera, Salmonella spp., Shigella spp., and Vibrio spp.) were identified by the biochemical test. Among them, E. coli and Shigella spp. were further ensured by PCR targeting bfpA and ipaH genes. Antibiotic susceptibility test results showed that E. coli isolates were highly resistant to erythromycin (80%); Shigella spp. were resistant to nalidixic acid (90%), whereas Salmonella spp. was found resistant to kanamycin (90%). Vibrio spp. were also resistant to azithromycin (80%) and erythromycin (80%), which should be a great concern for us. A semi-structured survey revealed that 63% of respondents suffered from different clinical conditions (intestinal diseases) due to SW pollution. So, steps should be taken to improve the proper management and disposal of solid waste and liquid effluent to save our environment and public health.  相似文献   

13.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

14.
Currently, there is no agreed upon method for estimating evapotranspiration (ET) across large regions such as the state of New Mexico. Remote sensing methods have potential for providing a solution, but require validation. A comparison between field‐scale ET measurements using a portable chamber ET measurement device and modeled ET using the remote sensing Regional Evapotranspiration Estimation Model (REEM) was performed where the model had not been previously evaluated. Data were collected during the growing season of 2015 in three irrigated agricultural valleys of northern New Mexico in agricultural and nonagricultural settings. No statistically significant difference was observed in agricultural datasets between means of measured (= 3.7 mm/day, SE = 0.31 mm/day) and modeled (= 4.0 mm/day, SE = 0.01 mm/day) daily ET; t(17) = ?1.50, = 0.15, α = 0.05. As there was no statistical difference observed between agricultural datasets, results support the use of REEM in irrigated agricultural areas of northern New Mexico. A statistically significant difference was observed in nonagricultural datasets between means of measured (= 1.7 mm/day, SE = 0.22 mm/day) and modeled (= 0.0 mm/day, SE = 0.00 mm/day) daily ET; t(9) = 1.79, = 5.7 × 10?6, α = 0.05. With additional calibrations and air temperature sensors placed outside of agricultural areas, REEM may be suitable for use in nonagricultural areas of northern New Mexico.  相似文献   

15.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   

16.
Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m‐ & p‐xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long‐term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one‐half the LTMDL in water. Six compounds (chloroform, p‐isopropyltoluene, methylene chloride, perchloroethene, 1,1,1‐trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m‐ & p‐xylene, methyl tert‐butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.  相似文献   

17.
ABSTRACT: Iron, added as (Fe-EDTA)-, was found stimulatory to V. spiralis at a concentration of 0.05 ppm. (Fe-EDTA)- had no effect upon growth of V. neotropicalis as measured by changes in dissolved oxygen and dry weight. Results are compared with those derived from similar studies with Hydrilla verticillata and Egeria densa. The implications of lake drawdown and aeration are discussed.  相似文献   

18.
The water disinfecting behavior of silver-modified clinoptilolite–heulandite rich tuff (ZSAg) as an antibacterial agent against coliform microorganisms from water in a continuous mode was investigated. Silver recovery from the disinfected effluents by the sodium-modified clinoptilolite–heulandite rich tuff (ZSNa) was also considered. Escherichia coli (ATCC 8739) and total coliform microorganisms, as indicators of microbiological contamination of water, were chosen to achieve the disinfection of synthetic wastewater or municipal wastewater. Ammonium (NH4+) and chloride (Cl) ions were added to the synthetic wastewater as an interfering chemical species on the disinfection processes. The antibacterial activity of the ZSAg as a bactericide was measured by the coliform concentration as evaluated by the APHA method. The amount of silver in the disinfected effluents was determined using atomic absorption spectroscopy. The inactivation of the ZSAg was calculated from the breakthrough curves based on the model reported by Gupta et al. It was found that when the silver concentration in the effluent is less than 0.6 μg/mL, the bacterial survival percentage increased and the volume of disinfected water diminished. The total silver amounts found in the effluent at the end of the disinfection processes varied depending on the water treated (synthetic or municipal wastewater). The presence of NH4+ ions in synthetic wastewater influent notably improved the disinfected water volume (zero NVC/100 mL), in comparison to the disinfection of the same influent without NH4+ ions. A contrary water disinfection behavior was observed in the presence of Cl ions. The silver recovery does not depend on the mass of the sodium zeolitic bed according with the wastewater to be treated (synthetic or municipal wastewater) and the presence of NH4+ or Cl ions in the influent also influenced the silver recovery from wastewater. The ZSNa did not have antibacterial activity. Therefore the amount of bactericide agent (silver-modified natural zeolite), coliform microorganisms from water (E. coli or consort of coliform microorganisms) as well as the water quality (synthetic wastewater or municipal wastewater) influenced both the disinfection process and the silver recovery in a column system.  相似文献   

19.
Abstract: Escherichia coli was used as a bacterial tracer for the development, calibration, and validation of a watershed scale fate and transport model to be extended to a suite of reference pathogens (Cryptosporidium, Giardia, Campylobacter, E. coli O157:H7). E. coli densities in water and sediments from the Blackstone River Watershed, Massachusetts, were measured at three sites for a total of five wet weather events and three dry weather events covering three seasons. The confirmed E. coli strains were identified by ribotyping for tracking the sources of E. coli and for determining the association of downstream E. coli isolates with isolates from upstream sediments. A large number of downstream samples were associated with upstream sediment sources of E. coli. E. coli densities ranged from 71 to 6,401 MPN/100 ml in water samples and from 2 to 335 MPN/g in sediments. Pearson correlation analysis revealed significant correlations between E. coli and total coliforms in water (r = 0.777, p < 0.01) and sediments (r = 0.728, p < 0.01). In addition, E. coli concentrations in water were weakly correlated with sediment particle size and sediment concentrations (r = 0.298, p < 0.01). A hydrologic model, WATFLOOD/SPL9, was used to predict the temporal and spatial variation of E. coli in the Blackstone River. The rapid rise of stream E. coli densities was more accurately predicted by the model with the inclusion of sediment resuspension, thus demonstrating the importance of the process.  相似文献   

20.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号