首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT: Southeastern Montana's Tongue River basin is experiencing rapid development of its extensive coal deposits. This development has a significant impact on the basin's hydrologic systems. Ground water flow is disrupted by mining and its quality degraded. Mine mouth conversion of the coal involves consumption of large amounts of water at the expense of downstream UBCTS, creating several water conflicts. Allocation of Tongue River water has favored agricultural users, and re-allocation is difficult.  相似文献   

2.
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the appropriation doctrine of law does not appear to protect prior downstream appropriations from increasing salinity in this case.  相似文献   

3.
ABSTRACT: Ground water, of relatively good quality, occurs though-out southeastern Montana's Tongue River basin and can be procured cheaply and easily. The widespread occurrence of springs and the de velopment of shallow aquifers enables settlement to occur away from perennial streams and allows for extensive grazing of the range. Ground water m the Tongue River basin occurs in five aquifers ranging from shallow alluvium to the extremely deep Madison Group. Coal beds of the Fort Union Formation contain significant quantities of good quality ground water. Extensive strip mining of these coal beds lowers the water level of nearby wells and causes springs to dry up. There are over 1,700 permits for ground water appropriation in the Tongue River Valley. Development of ground water has been especially important to ranchers in that it enabled most of the basin to be used for grazing. Ground water also provides an important source of water for domestic use. Ground water quality varies considerably in the basin depending upon locality and aquifer. Generally, ground water is characterized by high sodium, sulfate, and bicarbonate levels. Strip mining significantly alters ground water quality, primarily by leachates entering from the mine spoil.  相似文献   

4.
ABSTRACT: The Yellowstone River historically has produced an ample supply of high quality water which is widely used for irrigation, municipal and industrial purposes, recreation, and fish and wildlife. Recently, energy companies have attempted to obtain water rights in the Yellowstone basin for energy conversion facilities in coal-rich southeastern Montana. Existing users fear that energy diversions will impair their rights, preclude expansion of present beneficial users, degrade water quality, and adversely effect fish and aquatic life. In response to these concerns, the Montana Legislature enacted several laws to regulate water appropriations in the Yellowstone River basin, including means by which state and federal agencies could apply for reservations of water for future beneficial uses. Thereafter, both the Montana Fish and Game Commission and the State Water Quality Bureau formally requested relatively large instream flows to protect fish and wildlife and to maintain water quality. This paper describes Montana's experience through December of 1977 with the administration of water in the Yellowstone basin under these laws; emphasis is placed on the major requests for instream flows. The final resolution of the reservation applications, and the related ramifications, will be discussed in a future paper.  相似文献   

5.
ABSTRACT The abundant, high-quality waters of the Yellowstone River Basin have fostered a strong agricultural-based economy in eastern Montana. The region also contains the nation's largest strippable coal reserves. Numerous conflicts have developed around the mining of coal and in-state conversion of coal into electricity and synthetic fuels – processes that require large volumes of water. Competition for water among industrialists, agriculturalists, and others is a critical state issue. Probable effects of increased water diversions, the nature of water-energy conflicts, and state efforts to control development are discussed.  相似文献   

6.
河长制从地方性实验到获得全国推广并正式写入法律,不过短短十年时间。河长制的成功之处在于解决了河湖管理保护"多龙治水"的困局,并调动了地方政府治水的积极性。但河长制也面临着高度依赖河长个人与考核制度的隐忧,其发展过程始终伴随着人治与法治之争、应急机制与长效机制之辩,以及重奖励轻惩罚、强化权力集中弱化公众参与的评价。提升与完善河长制可以从制度内与制度外两个方面着手:制度内的提升是指河长制内部机制的改良,包括考核制度的完善、公众参与水平的提高;制度外的提升是指与河长制配套的制度环境建设,包括环保行政队伍与行政执法力度的加强,以及与水环境治理相关的市场工具、政策工具与法律工具的综合 运用。  相似文献   

7.
Abstract: Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes instream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey’s test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity, as indicated by that the stream electrical conductivity exhibited either no trend or a marginally significant positive trend. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBM development were different from one location to another along the Powder River.  相似文献   

8.
ABSTRACT: Federal planners, in proposing the massive main stem Missouri River water developments in Montana and North Dakota, promised economic and social benefits to the local residents. Five main stem dams, Fort Peck, Garrison, Oahe, Big Bend and Fort Randall, were evaluated for community and rural development effectiveness. Thirty-seven development factors were examined and improvements noted. Only small differences were noted between areas with water developments and the control area. Further analysis revealed that water development benefits moved downstream and to existing urban areas. The Missouri River's rural areas and small communities were not developed significantly by the water projects. Several problems associated with water development policy were illustrated by the study. Cultural differences between planners and the population impacted were ignored. Second, the allocation of social costs was not considered and related to this, serious geographic maldistribution of benefits and costs resulted. The differences between pre-development promises and development performance was dramatic. While the large dams remain as landmarks to engineering prowess, the projects need to be evaluated for their success in meeting humanistic development objectives. Major redevelopment may be warranted by such an ex-post evaluation.  相似文献   

9.
ABSTRACT: The Yellowstone River in Montana produces an abundant supply of high quality water, but in the early 1970's, the specter of mushrooming energy development in the drainage with its attendant demands for large volumes of water prompted this state to initiate steps to protect existing users and to control future water uses. A Water Use Act was passed in 1973, and a moratorium was subsequently placed on the granting of new permits for major diversion. During this moratorium, various governmental entities were given the opportunity to request the reservation of water for future beneficial uses, including instream purposes. An earlier paper described the reservation applications that were received by the state, and it also summarized the legal framework of the reservation process in Montana. Since that time, the responsible state agency has had the opportunity to review the reservation requests, and its final decision in this regard was announced in December of 1978. This paper describes the details of this decision. Basically, an attempt was made to preserve the integrity of the stream while also strengthening its agricultural uses. In addition, a portion of the flow was not earmarked which will provide some flexibility in reacting to future demands.  相似文献   

10.
In Massachusetts, the Charles River Watershed Association conducts a regular water quality monitoring and public notification program in the Charles River Basin during the recreational season to inform users of the river's health. This program has relied on laboratory analyses of river samples for fecal coliform bacteria levels, however, results are not available until at least 24 hours after sampling. To avoid the need for laboratory analyses, ordinary least squares (OLS) and logistic regression models were developed to predict fecal coliform bacteria concentrations and the probabilities of exceeding the Massachusetts secondary contact recreation standard for bacteria based on meteorological conditions and streamflow. The OLS models resulted in adjusted R2s ranging from 50 to 60 percent. An uncertainty analysis reveals that of the total variability of fecal coliform bacteria concentrations, 45 percent is explained by the OLS regression model, 15 percent is explained by both measurement and space sampling error, and 40 percent is explained by time sampling error. Higher accuracy in future bacteria forecasting models would likely result from reductions in laboratory measurement errors and improved sampling designs.  相似文献   

11.
Abstract: This study incorporates the newly available Gravity Recovery and Climate Experiment (GRACE) water storage data and water table data from well logs to reduce parameter uncertainty in Soil and Water Assessment Tool (SWAT) calibration using a SUFI2 (sequential uncertainty fitting) framework for the Lower Missouri River Basin. Model evaluations are performed in multiple stages using a multiobjective function consisting of multisite streamflow and GRACE water storage data as well as a groundwater component. Results show that (1) a model calibrated with both streamflow and GRACE data simultaneously can maintain the water balance for the whole basin, but may improperly partition surface flow and base flow. Additional inclusion of the groundwater constraint can significantly improve the model performance in groundwater hydrological processes. In our case, the estimation of specific yield of shallow aquifers has been increased to 10?2 from previous much underestimated level (<10?3). (2) The daily streamflow data are needed to confine the parameters related to water flow in channels such as the Manning’s coefficient, which are less sensitive to the monthly simulations. (3) Parameters are nonuniformly sensitive for different goal variables, and thus, proper specification of a prior distribution of parameters may be the key factor for global optimization algorithms to obtain stable and realistic model performance.  相似文献   

12.
ABSTRACT: A Management level model has been formulated in which a system analysis format is employed to answer some of the basic questions regarding urban water management strategies The model incorporates a multilevel optimization scheme to coordinate urban water supply, distribution, and wastewater management. A test of the model's utility is made in an application to the water management problems of the Denver, Colorado metropolitan area. Denver has utilized both agricultural transfers and transmountain diversions to supplement the natural stream resources of the South Platte River. Although plans are being made to increase the capacity of these sources, increasingly stringent standards on the area's effluents are enhancing the feasibility of reclaiming and recycling a portion of the wastewater. The urban model used in this study indicates the decision points at which respective strategies are introduced. However, by formulating the model from a planner's viewpoint, the most important results gained from the analysis are the costs of various institutional constraints which may restrict the decision maker's ability to implement optimal policies.  相似文献   

13.
This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana’s Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell’s IWRM framework and apply it to the analysis of the Task Force’s activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana’s water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state’s water resources management agency.  相似文献   

14.
Institutions are the rules and norms that guide societal behavior. As societies evolve—with more diverse economies, increased populations and incomes, and more water scarcity—new and more complex water management institutions need to be developed. This evolution of water management institutions may also be observed across different constituencies, with different societal needs, in the same time period. The Red River of the North basin is particularly well suited for research on water management issues. A key feature of water management in the Red River Basin is the presence of three completely different sets of water law. Minnesota’s water law is based upon riparian rights. North Dakota’s water law is based upon prior appropriation. Manitoba has a system of water allocation that features provincial control. Because the basin is fairly homogeneous in terms of land use and geographic features, its institutional diversity makes this an excellent case study for the analysis of local water institutions. This article reviews the local water management institutions in the Red River Basin and assesses the ongoing institutional evolution of local water management.  相似文献   

15.
周迪 《中国环境管理》2021,13(3):159-167
推动长江经济带发展是中共中央作出的重大决策,是关系国家发展全局的重要战略。法治是长江经济带实现高质量发展的根本保障。2021年3月1日,我国第一部流域法律《长江保护法》正式施行。长江流域司法协同治理是实现《长江保护法》提出的统筹协调、系统保护机制的重要保障。当前,我国长江经济带司法治理呈现碎片化特征,流域生态系统在司法保护尺度内尚未统一。本文基于对司法空间属性的理论分析,结合美国流域司法治理相关案例的考察,提出从空间协同性和专业协同性两个角度构建我国长江司法协同治理机制。  相似文献   

16.
Abstract: There are four known geothermal resource areas in the Imperial Valley that have a combined potential of over 4,000 megawatts of electrical energy for 25 years. Water resources available to support geothermal enerfy development are imprted Colorado River water, agricultural waste waters, Salton Sea water, and groundwater. In addtion, geothermal power plants can produce their own cooling water from steam condensate. Nevertheless, the relatively high water requirements of geothermal facilities along with a series of real and potential constraints may cause water supply dilemmas involving both the acquistion and use of cooling water. Important constraints are institutional policies, water supply costs, technical problems, and impacts upon the Salton Sea. These constranits and related dilemmas are examined in light of relevanty information on the valley's water resources, geothermal resources and energy technologies, cooling water requrements, and water supply options.  相似文献   

17.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

18.
Abstract: A public opinion survey was carried out in Montana to ascertain if the public identifies a level of benthic (bottom‐attached) river and stream algae that is undesirable for recreation. The survey had two parts; an On‐River survey and a By‐Mail survey. The On‐River survey was conducted via 44 trips randomly scheduled throughout the state during which recreators were interviewed in‐person at the stream. Selection of stream segments and survey dates/times was based on known, statewide recreational use patterns. By‐Mail survey forms were sent to 2,000 individuals randomly selected from Montana’s Centralized Voter File (CVF) available from the Montana Secretary of State. The CVF was current through 2004 and represented over 85% of the state’s eligible voting population. In both surveys, eight randomly ordered photographs depicting varying levels of stream benthic algae were presented, and participants were asked if the algae level shown was desirable or undesirable for recreation. Survey form design, selection of photographs, and pretesting followed acceptable protocols that limited unintentional bias through survey execution. There were 433 returned forms (389 complete) for the By‐Mail survey, while the On‐River survey documented 563 interviews. In both surveys, as benthic algal chlorophyll a (Chl a) levels increased, desirability for recreation decreased. (Other measures of benthic algae biomass are presented as well.) For the public majority, mean benthic Chl a levels ≥200 mg/m2 were determined to be undesirable for recreation, whereas mean levels ≤150 mg Chl a/m2 were found to be desirable. Error rates were within the survey’s statistical design criteria (≤5%). The largest potential error source was nonresponse in the By‐Mail survey; however, the population represented by nonrespondents would have to exhibit profoundly different perceptions of river and stream algae to meaningfully alter the results. Results support earlier work in the literature suggesting 150 mg Chl a/m2 represents a benthic algae nuisance threshold.  相似文献   

19.
ABSTRACT: Selective placement - under a rigorous statistical sampling design - of newly available monitoring equipment on irrigation systems may provide effective and economical estimates of total irrigation water use in areas where complete water use inventories are impractical. In 1979, a joint effort by the U.S. Geological Survey and Florida's Suwannee River Water Management District was launched to estimate the District's 1979 irrigation water use using a selective monitoring approach. Analysis of previous inventories of irrigation equipment and amounts of water applied in the District indicated that total 1979 water use estimates with six to nine percent sampling error could be obtained using selective monitoring, given the time and equipment limitations for the monitoring program. Restricting monitoring to a sample of farms can introduce systematic error to water use estimates if farmers' participation is related to their water use methods. Preliminary results of the 1979 study indicate tht declining participation rates, if unchecked, could lead to serious systematic eror in future North Florida selective monitoring studies.  相似文献   

20.
ABSTRACT: As coal resources are developed in the Northern Great Plains regions, new reservoirs are being considered to meet expanding water demands. The amount of water available for industrial diversion, however, could be limited by regulations that require minimum flow levels to be maintained downstream of the reservoir sites. Computer simulations of potential reservoirs were used to determine to what extent, if any, instream flow requirements might limit the ability of reservoirs to deliver industrial water supplies. Data on instream flow requirements, potential reservoir sites, and historic runoff were input for the simulation of the Powder River Region of Montana and Wyoming. Results of the simulations compared the maximum amount of water available for industrial diversion with and without requiring instream flow criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号