首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

2.
为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日~2015年2月28日徐州大气颗粒物质量浓度(PM10、PM2.5、PM1)、数浓度(0~1μm、1~2.5μm、2.5~10μm)和气溶胶光学特性等数据.结果表明:0~1μm粒径范围细颗粒物的大量增多是引发徐州冬季雾-霾天气的主要因素,徐州冬季地面风速小(静风或轻风天气),较高的大气相对湿度对雾-霾的形成和维持起着重要影响作用.持续时间较长的雾霾天气,因颗粒物吸湿增长和水汽附着,1~10μm粒径范围大气颗粒物在雾霾时段易发生沉降而减少,后随相对湿度降低雾霾转为短时间的霾天气,1~10μm颗粒物数浓度大幅上升.徐州冬季500nm波段AODtotal和AODfine mode具有相同的变化趋势,雾-霾日AODtotal和AODfine mode显著高于非霾日.AODfine mode与AODcoarse mode的比值雾-霾日亦明显高于非霾日,而且在雾-霾日Angstrom波长指数主要集中在1~1.6,表明徐州冬季雾-霾时段大气中细颗粒物为主控粒子.  相似文献   

3.
采用地面大气能见度、PM_(2.5)质量浓度、梯度气象资料、塔上湍流观测资料等多种资料及后向轨迹方法,分析近地层温湿结构和湍流特征对2016年12月16日—21日天津地区一次严重持续雾霾天气演变过程的影响.结果表明,本次雾霾天气过程可以明显的分为霾、雾的生成和发展、雾成熟和雾霾消散等4个阶段,近地层温度、相对湿度和风的垂直分布及湍流特征对各阶段的雾-霾转化起到了重要作用.霾生成期间,偏南气流盛行,地面风速降低,RH不断增大,湍流不活跃;地面辐射降温引发了近地层内显著的强逆温,并导致RH由地面到高空逐渐增大,有利于雾的生成和发展;感热通量和潜热通量爆发式增长,导致逆温层瓦解,雾顶继续抬升,雾进入成熟阶段,湍流活动减弱;受西北气流影响,湍流活跃,高空的干冷气团向下取代地面暖湿气团,结束本次雾霾天气过程.采用近地层温湿结构和湍流特征资料,可用于雾-霾天气的演变及其转化过程精细分析.  相似文献   

4.
利用微脉冲激光雷达(MPL)对上海浦东2008年12月1日至2010年11月31日期间连续观测的霾期间气溶胶的消光特性进行分析,讨论了上海浦东地区不同强度霾和无霾时气溶胶的垂直分布日变化与季节变化.结果表明,重、中度霾的气溶胶主要分布在500m以下,小时平均消光系数值在0~1.2km-1范围内波动;轻度霾及轻微霾时段,小时平均消光系数波动范围约在0~0.5km-1;无霾时段小时平均消光系数波动范围约在0~0.2km-1;中-重度霾时段消光系数春>冬>夏>秋;夏季低层大气消光较大,春季高层大气消光较大,冬秋两季随高度增加消光逐渐减小;夏冬两季较易发生中、重度霾.  相似文献   

5.
余洋  杨军 《环境科学学报》2016,36(7):2305-2313
2007年南京冬季雾外场综合试验期间,雾、霾交替持续的最长时间达100 h以上。利用大气气溶胶粒子和雾滴数浓度尺度谱分布、能见度、相对湿度等同步观测资料,从Mie散射理论出发,研究了雾、霾不同阶段大气消光特征,重点分析了大气气溶胶粒子和雾滴在雾、霾持续和转化过程中的消光作用。结果表明,雾、霾过程不同阶段平均能见度的大小关系为:雾<湿霾<霾~轻雾。平均而言,雾阶段雾滴和气溶胶粒子的消光作用相当,其中,雾滴消光波动幅度大于气溶胶粒子消光,能见度的变化趋势主要由雾滴的消光决定。湿霾、霾和轻雾阶段的消光主要由气溶胶粒子造成。湿霾阶段的低能见度是由于大量积聚模态的气溶胶粒子在较高相对湿度环境中吸湿增长所致。霾阶段气溶胶粒子数浓度达到最大,核模态粒子占总数浓度的80%左右,是导致该阶段能见度较低的主要原因。轻雾阶段气溶胶粒子的消光系数最小,但雾滴可提供10%~15%的消光贡献,导致能见度与霾阶段相当。  相似文献   

6.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

7.
近50年南京雾霾的气候特征及影响因素分析   总被引:1,自引:0,他引:1  
利用南京地区5个观测站点1962-2012年的雾日和霾日气象资料,对南京雾霾日数的年际及四季的分布和变化特征、雾霾相互转换的条件及气象要素对雾霾的影响进行了分析。结果表明:南京郊区的年均雾日比南京市区的年均雾日偏多,受地势及污染物等影响,各站有明显的差异。其中,江浦、溧水、高淳雾日数上升趋势明显,而六合、南京两站雾日数略有下降。南京市区的年均霾日是南京郊区的年均霾日的2.7倍,南京郊区和市区的霾日数在1962-2012年期间总体上呈上升趋势,且各站都在2012年达最高值。南京地区平均雾日数秋季最多,夏季最少;平均霾日数冬季最多,夏季最少。分析也表明,雾和霾往往相伴出现,而且可以相互转化,南京市区雾霾多出现在近地面风速较小、风向为东南东和湿度较大等气象条件下。  相似文献   

8.
2013年12月石家庄一次霾天气过程中的黑炭浓度特征   总被引:1,自引:0,他引:1  
2013年12月5日~27日石家庄地区连续出现霾天气,大气日均能见度为0.2~8km,其中大约89.53%的时间大气能见度不足5km.分析12月10~27日期间的黑炭固定观测数据表明:1)黑炭浓度均值为39.84μg/m3,日变化具有明显的双峰结构,第1个峰值在上午9:00左右,第2个峰值在夜晚21:00~24:00;2)黑炭浓度小时均值与大气能见度小时均值之间呈负相关关系,当黑炭浓度大于固定观测期间的均值时,重度霾发生的概率为97.78%.此外,通过在车辆上安装黑炭分析仪和GPS接收机对石家庄市区主干道进行了多天的移动观测,结果表明:黑炭浓度与交通密度和街道特点(道路类型、交通密度)直接相关; 市区二环的黑炭浓度较高,大约是二环内黑炭浓度均值的1.48倍;市中心区的黑炭浓度相对较低,且呈现明显的东西-南北向差异性.  相似文献   

9.
2015年12月下旬嘉兴地区持续性雾-霾污染过程分析   总被引:2,自引:0,他引:2  
利用FNL再分析资料、自动气象站和环境监测站的小时观测数据及基于WRF-CHEM化学模式的排放源敏感性对比试验和高分辨率输出结果对2015年12月21-25日影响嘉兴地区的一次持续性雾-霾污染过程进行分析,结果表明:污染期间对流层中高层维持较强的西南急流,南支锋区发展明显,北支槽位置偏高,冷空气势力较弱,大尺度环流形势有利于维持稳定的大气层结结构.PM2.5浓度明显上升时,地面均为西北气流所控制,而浓度下降与地面东北风回流有关.此次雾-霾污染过程期间,本地污染平均贡献率为42%,江苏地区次之约占23%.大气层结稳定时本地污染物的贡献率可达60%左右.两次冷空气过程中外来污染物的输送通量和浓度平流的强度明显不同.近地面不同高度上PM2.5浓度差变化与平流累积贡献量的变化表现出较好的一致性,高层垂直平流较低层明显.  相似文献   

10.
长江三角洲地区霾判别方法的对比分析   总被引:3,自引:1,他引:3  
为对比霾判别方法的差异,探讨霾观测标准的再完善性,文中从空间分布与单点时间序列两方面分别分析研究了4种霾判别方法的特征与适用性.选取中国长江三角洲地区1980~2009年38个地面观测站的气象资料,根据使用日均值的方法 1、2和使用14:00观测值的方法 3分别统计各站点的霾日,分析3种方法的异同.发现这些方法都能够反映出霾的长期变化趋势,但存在差异,这种差异随着年代际变化逐渐减小.由方法 1得到的霾日数最多,方法 3考虑了天气现象,比方法 1和2更合理.依据南京北郊2012年5月~2013年4月的逐时PM2.5浓度、相对湿度和能见度等资料,分析比较了方法 4(霾的观测和等级预报,QX/T 113-2010)与方法 1、2、3的不同.结果表明,由方法 3统计出的霾日少于其他方法,由方法 4统计出的霾日数介于方法 1与方法 3的结果;方法 3不能分辨出霾的严重程度,而其他方法能较好地分辨出霾的严重程度.  相似文献   

11.
大城市区域霾与雾的区别和灰霾天气预警信号发布   总被引:39,自引:6,他引:33  
由于经济规模的迅速扩大和城市化进程的加快,都市霾现象或者是灰霾天气日趋严重,霾与雾的区分成为一个非常现实,又迫切需要解决的问题。通常在平面时已达到饱和的水汽压,对相当于球面的云雾滴来讲就是未饱和的,那样云雾滴就会蒸发;在水汽条件不变时,云雾滴由于蒸发而变小,导致它的平衡水汽压升高,则更易蒸发掉。在不饱和大气中小于数微米的云雾滴必然蒸发,而且伴随着蒸发云雾滴尺度会进一步变小,导致曲率越来越大,蒸发速率越来越快。过去错误认为凝结核可以在低相对湿度情况下产生凝结生成雾滴的观点,是忽视了粒子曲率作用的结果,将实验室大颗粒(常常达毫米量级)的吸湿性特征,延用至次微米粒子造成的。降温是达到饱和形成雾滴的即重要又主要的物理过程,云雾是低温下饱和气块的可见标志。在云雾中必然存在凝结或凝华过程,因而必然伴随着潜热释放,这就使云雾内的温度高于环境,在云雾内必然盛行微弱的上升气流,不可能是下沉气流,这些宏观过程在霾层内是不存在的,因而成为识别霾与雾的重要的宏观动力条件。在对历史资料进行统计时,在排除降水、吹雪、雪暴、沙尘暴、扬沙、浮尘、烟幕、等等视程障碍现象的情况下,通过调试相对湿度,使得雾与轻雾反映自然的年际与年代际气候波动,而霾反映由于人类活动而引起的趋势性变化,其限值大体在90%左右,与美国和英国讨论霾影响能见度的长期变化趋势的研究中使用的相对湿度限值相同,他们都去除了相对湿度>90%的资料,只研究了相对湿度<90%时的能见度变化趋势。进行相对湿度订正才能确保资料的高质量。近年来由于人类活动大气气溶胶污染日趋严重,1980年代以来大幅增加的霾日,绝大部分是由于人类活动影响的气溶胶细粒子污染造成的。依据本文和以前的研究,给出了霾与雾区分的概念模型,霾与雾观测的标准,和灰霾天气预警信号发布的标准。  相似文献   

12.
1981~2010年深圳市不同等级霾天气特征分析   总被引:6,自引:0,他引:6  
利用1981~2010年深圳市地面观测及空气质量监测资料,分析深圳不同等级霾天气的长期变化特征以及大气水平能见度、空气质量与霾的关系.结果表明:深圳霾日数总体呈增多趋势,强度增强,中度以上霾增多;各等级霾日数均呈增多态势,但不同等级霾日占年总霾日的比例变化趋势不同,轻微霾所占比例下降,轻度以上霾上升; 霾天气呈现冬季>秋季>春季>夏季的季节特征,但重度霾却是夏季最多; 霾导致大气水平能见度明显下降,霾日平均能见度较非霾日低6~7km,霾等级越高,能见度下降越明显,霾日能见度日变化幅度较非霾日小;霾日SO2、NO2浓度为非霾日的1.4~1.7倍,PM10是非霾日的2.2倍,大气颗粒物污染加剧可能是深圳能见度恶化、霾天气增多的一个重要原因;针对荔香站霾日SO2浓度日变化不明显,PM10 、NO2浓度呈双峰型分布,与上下班时段吻合,说明机动车的增加也是深圳霾天气增多的主因之一;霾等级越高,空气中PM10、SO2、NO2的浓度越高,从轻微到重度霾各级之间SO2、NO2和PM10浓度增幅大都在15%~20%.  相似文献   

13.
近三十年温州市区年灰霾天数变化大致经历了"少-增多-减少-急速增多"四个阶段,灰霾天气多出现于冬春季节,秋季最少,出现最多的月份主要集中在1月和12月。灰霾的月、季变化趋势主要与当地的气象条件有关,而年际变化多与大气复合污染物浓度有关。近十年的灰霾天数变化与大气常规污染物浓度变化趋势关联度不大,主要是现有的空气质量监测体系只考虑了SO2、NO2、PM10三项指标,而忽略了与灰霾天气密切相关的PM2.5细颗粒等指标。  相似文献   

14.
利用东北地区194个地面气象观测站的1961~2013年观测资料,对东北地区霾日及不同等级霾日的空间分布特征和时间演变规律进行分析.结果表明:东北地区霾日空间分布差异显著,辽宁中部和黑龙江中北部霾日相对较多,年平均霾日超过50d,吉林西部地区霾日最少,年平均霾日不超过2d,不同等级的霾日日数空间分布与总霾日日数基本一致;东北地区霾日主要集中在冬季,占全年霾日57.9%,秋季次之,春季最少;1961~2103年东北地区平均霾日呈显著增加趋势(2.9d/10a),其中1981~2000年时段增加最为显著,轻微霾日、轻度霾日、中度霾日和重度霾日均呈增加趋势,但轻度霾日、中度霾日和重度霾日21世纪以来较80年代略有减少.  相似文献   

15.
利用1960~2012年长江三角洲地区气象观测资料,对长江三角洲区域雾和霾的时空分布及其影响因素进行了分析.结果表明:长江三角洲地区雾、霾分布不均匀,雾日大值区主要分布在江苏省盐城中部沿海地区、安徽省黄山地区、浙江东部沿海地区,霾日大值区主要分布在以南京、杭州、合肥、衢州为中心的周边城市.时间变化上,城市化水平高的大城市年雾日数在20世纪80年代之前呈增加趋势,之后呈减少趋势;城市化水平低的小城市年雾日数也呈先升后降的趋势,但下降时间滞后于大城市.大城市雾日月平均分布冬季最多,春秋季次之,夏季最少,小城市雾日月平均分布呈双峰型特征,即春季和冬季较多.大城市和小城市年平均霾日数一直呈增加趋势且20世纪90年代之后差距变大.区域气候变化和城市化导致的温度上升,空气污染加剧导致的气溶胶增加,是造成长江三角洲雾日、霾日不同变化特征的原因,但它们之间的相互作用效应复杂,值得深入研究.  相似文献   

16.
利用2010~2013年逐时霾、能见度和空气质量监测数据,分析了深圳霾天气的变化特征、霾与空气质量和气象条件的关系.结果表明:深圳市霾日数总体呈现增多增强趋势,2009年开始明显下降;霾日数呈“V”型月变化:即秋冬季多、春夏季少,秋冬季多发持续时间长、影响严重的霾过程,春夏季多发持续时间短的霾过程; 霾常伴有污染发生(35%),污染以轻度污染为主;霾时首要污染物PM2.5最多、其次O3,这说明PM2.5是造成深圳霾的主因,且深圳光化学污染严重. 霾时PM2.5、PM10 和O3季节变化明显,冬春季首要污染物以PM2.5为主(75%以上),夏秋季O3和PM2.5为主;分析还发现,风、相对湿度与霾密切相关,风速越弱,湿度越大, 越利于霾出现和发展.约80%的中重度霾出现在风速<2m/s,相对湿度70%~90%的情况下.  相似文献   

17.
利用中山市2000~2014年气象资料及2013~2014年环境监测站资料,分析中山市霾特征及气象影响因子,结果表明,中山市霾日数年际变化明显,最少为11d,出现在2005年;最多为134d,出现在2008年.霾天气主要发生在秋冬季节,霾日数最多的月份是1月,平均为10.5d.霾日PM2.5的平均浓度是非霾日的2.26倍,PM2.5是霾天气的重要污染物.中山市霾日典型天气形势有7种:大陆高压型、海上高压型、均压场型、冷锋前部型、台风外围下沉气流型、槽前脊后型、低压槽型.其中以大陆高压型占比例最高,为52.03%,冷锋前部型造成的能见度最低.气流轨迹聚类分析表明,影响中山的气流轨迹有7类,主要来源于东北方向的大陆和偏东方向的沿海;在东北方向气流轨迹影响下,污染物浓度较高;在东部沿海的气流轨迹下,能见度较低,表明中山市的霾天气受区域传输影响显著.  相似文献   

18.
近年来,雾霾天气成了中国经济发达地区冬季常见的天气现象,给人们的生活带来诸多不便,严重影响着人们的身体健康.通过对雾霾天气时空气成分的研究以及雾霾天气形成原因的分析,可知雾霾的主要成分有硫氧化物、氮氧化物和悬浮在空气中的颗粒物.雾霾的成因不仅仅是人为的因素,它还与自然因素有关.另外针对雾霾的特点列出了一些雾霾天人体的防护措施和治理雾霾的一些方法.希望可以给现已生活在雾霾天气下,且深受雾霾迫害的人们带来一点儿帮助.同时能够起到警醒环保意识差的人来共同治理和防治雾霾.  相似文献   

19.
利用2009—2013年冬季地面气象观测数据筛选出非霾和不同强度霾的影响时次,采用能见度与消光系数的定量关系和冬季波长系数对微霾冲激光雷达反演修正得到的气溶胶消光系数,分析了上海地区气溶胶在垂直高度上的集中范围,当地面出现轻微霾、轻度霾、中度霾、重度霾时气溶胶分别主要集中于近地面0.81、0.49、0.41、0.40 km以下,非霾时气溶胶主要集中在近地面1.35 km以下;在此基础上,根据判别不同强度霾的能见度标准和能见度与消光系数的定量关系,将能见度换算为消光系数,再对微脉冲激光雷达反演消光系数进行修正,从而判断高空霾的强度及所处的高度;另外还探讨了云对产生重度霾的影响、降水与中度霾和重度霾的关系以及颗粒物质量浓度与不同强度霾的关系,发现48.53%的重度霾是受云影响而产生的,37.11%中度霾发生前后伴有降水现象,51.14%的重度霾发生前后伴有降水现象,非霾、轻微霾,轻度霾、中度霾、重度霾期间的颗粒物浓度和细颗粒物占的比例依次增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号