首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

2.
Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury.  相似文献   

3.
Solanum tuberosum L. cv Norchip plants were grown in open-top chambers in the summer of 1986. Plants were treated with charcoal-filtered air, nonfiltered air, or nonfiltered air supplemented with 33, 66, or 99% of the ambient ozone (O3) concentrations from 1000 to 2000 h eastern daylight time daily. In addition, plants received charcoal-filtered air plus 0, 0.15 (393 microg m(-3)), 0.34 (891 microg m(-3)), or 0.61 (1598 microg m(-3)) ppm sulfur dioxide (SO2) from 0900 to 1200 h once every 14 d for a total of four treatments. Ozone induced a linear reduction in number and weight of Grade One (> 6.35-cm diameter) potato tubers and in total weight of tubers. Ozone also induced linear reductions in the percentage of dry matter of tubers and linear decreases in glucose and fructose content of Grade One tubers. Sulfur dioxide induced a stimulation and then decline of the number, percentage of dry matter, and sucrose content of Grade One tubers. The SO2 response best fit a quadratic curve. No O3 x SO2 interactions were detected for any of the yield or quality functions measured.  相似文献   

4.
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed in open-top chambers to six different ozone levels (8-h daily means from 12.4 to 122 microg m(-3)), to non-filtered air and to chamberless field conditions for 31 days from seedling stage through ear emergence. Powdery mildew (Erysiphe graminis DC. f.sp. tritici Marchal) which developed during the exposure period was significantly enhanced from 0.3/0.6% (two chamber replicates), 1.2/2.1%, 0.9/2.2% in charcoal-filtered air (CF) to 1.5/1.6%, 3.7/4.3%, 4.4/4.6% at the highest level of ozone, on the flag leaf, second and third leaf position, respectively. Post-exposure inoculation with Septoria nodorum Berk. led to increases of disease severity on the flag leaf from 40.9/43.6% in CF to 66.3/70.6% at the highest ozone concentration and on the ears from 15.7/16.5% to 26.3/26.6%. In the same comparison, severity of spot blotch following inoculation with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke) was increased on the flag leaf from 3.6/8.9% to 12.3/23.4%. The three diseases examined correlated significantly with the ozone treatments in fumigated chambers. Disease severity was enhanced even on undamaged plant tissue (flag leaves). Infections of the two facultative pathogens on lower leaf positions started only in part from visible ozone lesions, mildew did not start from such lesions. No significant effects of ozone in the chambers on the saprobial colonization of the phyllosphere were detected, whereas there were marked differences in this respect between plants from the field and the chambers. At the highest ozone treatment, contents of chlorophyll a and carotenoids on the second leaf position declined significantly, which was associated with symptoms of premature senescence. Senescing effects of ozone are therefore assumed to be one major factor in predisposing wheat for necrotrophic leaf pathogens. Surprisingly, injurious and predisposing effects of ozone were completely absent in chambers supplied with non-filtered air containing ambient ozone at doses equivalent to those in CF + ozone chambers. Evidently, biological effects of ozone in pure air and in ambient air may differ markedly.  相似文献   

5.
To determine if ozone (O3) and root zone temperature (RZT) affect plant biomass allocation and photosynthesis, radish (Raphanus sativus) plants were grown in controlled environment laboratory chambers in one of four treatments: episodic O3 (average delivery 0.063 mumol mol-1) with RZT at 13 degrees C, episodic O3 (same delivery) with RZT at 18 degrees C, charcoal-filtered air with RZT at 13 degrees C and charcoal-filtered air with RZT at 18 degrees C. O3 reduced total biomass and shoot biomass of radish at 13 degrees C RZT but had no effect at 18 degrees C RZT. Low (13 degrees C) RZT decreased total biomass in both O3 and charcoal-filtered air. RZT had no overall effect on biomass allocation, but O3 lowered root-to-shoot ratios for plants grown at 18 degrees C RZT. Photosynthesis was reduced for plants grown at 18 degrees C RZT and O3, but stomatal conductance was not affected by O3 nor RZT. These results indicate that O3 and low RZT decrease biomass, but that plant photosynthesis is decreased by O3 and warm RZT.  相似文献   

6.
The seedlings of Pinus armandi Franch. were exposed to ozone (O(3)) at 300 ppb for 8 h a day, 6 days a week, and simulated acid rain of pH 3.0 or 2.3, 6 times a week, alone or in combination, for 14 weeks from 15 June to 20 September 1993. The control seedlings were exposed to charcoal-filtered air and simulated rain of pH 6.8 during the same period. Significant interactive effects of O(3) and simulated acid rain on whole plant net photosynthetic rate were observed, but not on other determined parameters. The exposure of the seedlings to O(3) caused the reductions in the dry weight growth, root dry weight relative to the whole plant dry weight, net photosynthetic rate, transpiration rate in light, water-use efficiency and root respiration activity, and increases in shoot/root ratio, and leaf dry weight relative to the whole plant dry weight without an appearance of acute visible foliar injury, but did not affect the dark respiration rate and transpiration rate in the darkness. The decreased net photosynthetic rate was considered to be the major cause for the growth reduction of the seedlings exposed to O(3). On the other hand, the exposure of the seedlings to simulated acid rain reduced the net photosynthetic rate per unit chlorophyll a + b content, but did not induce the significant change in other determined parameters.  相似文献   

7.
European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g(s)), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l(-1) O(3) added for 7 h d(-1) over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons.  相似文献   

8.
Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l(-1)) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00-20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO(2) assimilation rate, stomatal conductance, F(v)/F(m) and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.  相似文献   

9.
A field experiment was conducted in open-top chambers to assess the importance of peak exposure concentration and exposure frequency on the responses of kidney bean plants to O3. There were five treatments in the study: charcoal-filtered air, constant exposure to 0.05 ppm O3 (131 microg m(-3)) daily. fluctuating exposure to 0.08 ppm O3 on three alternate days, cluster exposure to 0.08 ppm O3 on three consecutive days, and peak exposure to 0.12 ppm O3 on two consecutive days. Exposures lasted 4 h and produced an average weekly exposure-period concentration of approximately 0.05 ppm in the O3-addition treatments and 0.025 ppm in the charcoal-filtered treatment. Exposures began on June 23 and terminated on September 8. Plants were harvested weekly and assessed for the number, area, and dry mass of leaves; dry mass of stems; dry mass of roots; the number of pods; and the incidence of foliar O3 injury. Yield was assessed at the end of the study. There were no consistent differences between the plants receiving charcoal-filtered air and those receiving O3 exposure. Significant differences were detected among the treatments for several of the growth variables assessed at the interim harvests, but in the final two harvests these differences had mostly disappeared. There were no significant effects of the O3-addition treatments on yield when compared to the plants receiving charcoal-filtered air. This indicates that there were no cumulative impacts on plants exposed to 0.12 ppm O3 for 4 h on two consecutive days followed by filtered air compared to plants receiving charcoal-filtered air. The seasonal 7-h average concentrations of O3 in the peak and filtered air treatments were approximately 0.040 and 0.025 ppm, respectively.  相似文献   

10.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

11.
Twenty-two week-old Pinus taeda L. (loblolly pine) seedlings of 30 open-pollinated and five full-sib families, representing a wide range in geographic origin, were grown in charcoal-filtered (CF) air or CF-air supplemented with 160 or 320 nl liter(-1) ozone for 8 h day(-1), 4 days week(-1), for 9 weeks. Visible foliar injury (banded chlorosis, tip burn and premature senescence) was apparent in many families after 3 weeks in 320 nl liter(-1) and 6 weeks in 160 nl liter(-1) ozone. Decreases in relative height and root collar diameter growth rates, total dry weight, root dry weight, shoot dry weight, and root/shoot ratios were evident after 9 weeks of treatment with both 160 and 320 nl liter(-1) ozone. For relative height growth rates, family differences in response to ozone were observed. By the study's end, net photosynthesis rates were 15% less for the 320 nl liter(-1) ozone treatment as compared to the CF-air treatment. Total soluble sugar and total starch content of roots were not changed after 9 weeks of ozone exposure.  相似文献   

12.
An evaluation of the effects of ambient ozone (O3) on muskmelon was conducted with the use of open-top chambers (OTCs). 'Superstar' muskmelons grown in charcoal-filtered (CF) chambers compared to those grown in nonfiltered (NF) chambers showed significant differences in the severity of visible foliar O3 injury. Furthermore, plants grown in NF conditions had significantly less (21.3%) marketable fruit weight and fewer (20.9%) marketable fruit number than those from CF chambers. No differences were found in early biomass production, leaf area, or number of nodes after 3 weeks of exposure to treatment conditions. Ambient O3 did not affect soluble solids content of mature fresh fruit nor foliage fresh weight at final harvest. Results indicate that ambient concentrations of O3 in southwestern Indiana caused significant foliar injury and yield loss to muskmelons.  相似文献   

13.
Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.  相似文献   

14.
The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.  相似文献   

15.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

16.
Loblolly pine (Pinus taeda L.) seedlings were exposed to 0.120 micromol mol(-1) (ppm) ozone for 7 h per day, 5 days per week for 12 weeks. No visible damage resulted from this regime. A short-lived radioisotope of carbon ((11)C) was used to characterize changes in plant physiology caused by ozone, the first time this technique has been used for ozone exposure studies. In comparison to plants kept in charcoal-filtered air, pines exposed to ozone exhibited reductions in photosynthesis (16%), speed of phloem transport (11%), phloem photosynthate concentration (40%) and total carbon transport toward roots (45%). Photosynthate not transported to the roots appeared to accumulate in the stems. Primary branches of pines exposed to ozone were some 50-60% heavier than those of control pines. Ozone was thus shown to have a significant short-term impact on phloem transport processes that results in a shift in allocation of photosynthate favoring stems.  相似文献   

17.
Photochemical 'smog' contains mixtures of gases (e.g. ozone, nitrogen dioxide), and dry particles (e.g. nitrates). Intermittent fog in the same geographical area can be acidic with high concentrations of nitric acid. Results from recent field studies in the Los Angeles Basin have emphasized the relative toxicity of these components of photochemical air pollution. Studies have focused on gaseous+fog or gaseous+dry particulate effects on conifers, gaseous+fog effects on crops, and the effects of trace pollutants produced during generation of ozone on crops. Data from these studies indicate that direct alterations in growth and physiological responses were observed only with gaseous pollutants (primarily ozone), or repeated applications of highly acidic fogs (pH < 2.7). Direct particle dry deposition effects are unclear. Few interactions have been found between gaseous pollutants and acidic fog. Charcoal-filtered open-top chambers are highly effective in removing pollutants in the following order: fog (100%) > peroxyacetyl nitrate > ozone > nitrogen dioxide > sulfur dioxide > nitrate ion > ammonium ion > sulfate ion. However, nitric oxide concentrations are higher in charcoal-filtered chambers than in ambient air. The studies point out the importance of considering other components of photochemical pollution in addition to ozone, especially when investigating subtle, long-term effects on vegetation.  相似文献   

18.
The responses of four major aphid pest species feeding on three major crops were studied in a series of experimental chambers on the roof of Imperial College in South Kensington, London. The experimental chambers were continually circulated with air which had been subjected to a variety of filtration treatments. In the first series of experiments there were three chambers subject to ambient air, charcoal-filtered air, and charcoal plus 'Purafil'-filtered air; in the subsequent experiments there were four chambers, a charcoal plus 'Purafil' plus charcoal treatment being added. These treatments provided a range of concentrations and mixtures of the ambient gases present at the site. The growth rate of aphids was measured both during filtration and post-filtration, the plants being exposed from sowing for either 42 or 84 days. In all cases there were significant effects on aphid performance which seemed to be most strongly linked to absolute and relative NO concentrations. The pattern of responses by the aphids accorded extremely well with those observed in closed-chamber fumigation experiments with stimulation of performance in relatively polluted air in all cases except Acyrthosiphon pisum (Harris) feeding on Vicia faba L. where the opposite effect was recorded.  相似文献   

19.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

20.
Young wheat plants were fumigated with 170 microg m(-3) ozone for 3 days, or with 210 microg m(-3) ozone for 7 days, for 7 hours a day. At the end of the fumigation period the plants were inoculated with brown rust (Puccinia recondita f. sp. tritici) uredospores. The development of new uredospore pustules on fumigated and control plants was evaluated as a measure of rust disease potential. The number of pustules on the ozone fumigated plants was greatly reduced in comparison with the number of plants treated with charcoal-filtered air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号