首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon and carbon uptake rates were studied over a 24 h light/dark cycle in a synchronised culture of the marine diatom Cylindrotheca fusiformis (Reimann et Lewin) using 32Si and 14C. The silicic acid uptake rate per cell (cSi) varied between 1.2 and 20.0 fmol Si cell–1 h–1 and was closely correlated to the G2+M phase of the cell cycle. A linear and significant relationship was determined between the percentage of cells present in G2+M and cSi. Evolution of the soluble free-silicon pool was studied simultaneously. The concentration of the total soluble free pool of silicon (QPSi) varied from 1% to 7% of the total silicon content. A significant difference of 1.5 fmol Si cell–1 between QPSi and the labelled free pool (QnpSi) was measured, indicating the presence of an unlabelled fraction of the pool. The concentration of QnpSi was around 1.0 fmol Si cell–1 prior to cell division and did not change as a function of cSi, which indicated a feedback mechanism coupling uptake into the free pool and incorporation into the frustule. In parallel, 14C uptake variation (cC) was measured during the division of the population. The value of cC varied between 0.44 and 0.78 pmol C cell–1 h–1 and appeared to be maximal when cells were in the G1 phase. This variation of cC marginally affected the total carbon content of the cells (QTC) in comparison with the light/dark cycle. The variations in the Si/C ratio, from 0.021 to 0.046, demonstrated the different control mechanisms of Si and C metabolisms during the course of the cell- and photocycle.Communicated by S.A. Poulet, Roscoff  相似文献   

2.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

3.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

4.
We report findings from the first laboratory experiments to assess toxicities of metals found in drilling muds to embryos and prezoeae of a brachyuran crab. Embryos of Cancer anthonyi are brooded externally on the abdomen of female crabs; thus, embryos may be continuously exposed to pollutants contained in sediments of contaminated benthic habitats. Lethal concentrations of metals to embryos after 7 d exposures were: iron and barium (sulfate), 1 000 mg l–1; barium (chloride), 100 mg l–1; aluminum and nickel, 10 mg l–1; copper and lead, l mg l–1; cadmium, chromium VI and manganese, 0.01 mg l–1; mercury, 0.001 mg l–1. All metals effectively retarded embryos from hatching at concentrations equal or lower to those causing mortality, except for cadmium. Particularly impressive was iron, which suppressed hatching at l to 10 mg l–1, concentrations previously found non-deleterious to marine organisms and 100 times more dilute than concentrations causing significant embryo mortality. The effects of metals on embryos increased as a function of exposure duration. Embryo mortality was delayed for at least 120 h at concentrations 1.0 mg l–1, with the exception of mercury. Lethal concentrations established at 96 h were meaningless for crab embryos, because acute toxic thresholds were not attained by that time. Larval survivorship to chromium VI, copper, and zinc increased following exposure of embryos to these metals at low concentrations (1.0 mg l–1), suggesting induction of biochemical pathways for products which bind or metabolize metals. Identical exposures of embryos to lead failed to enhance subsequent larval survivorship, showing that inductions may be metal-specific. We suggest that exposures of brachyuran embryos at field sites and the success of their subsequent hatching in the laboratory may be a means of assessing environmental contamination otherwise difficult to monitor.  相似文献   

5.
Bleaching (visible loss of symbiont color) in populations of the diatom-bearing foraminifer Amphistegina has been recorded from reefs worldwide since 1991. Field studies and previous laboratory experiments have strongly implicated solar radiation as a factor in bleaching stress. The influence of spectral quality and quantity of photosynthetically active radiation (PAR) and ultraviolet radiation (UV) on growth rates and bleaching in Amphistegina gibbosa was investigated in the laboratory using fluorescent sources of PAR (blue with a spectral peak at 450 nm and white with a 600-nm spectral peak) and biologically effective ultraviolet radiation [UVB (280–320 nm)]. Growth rate, as indicated by increase in maximum shell diameter, saturated at a PAR of 6–8 mol photon m–2 s–1, increased in blue light, and was not influenced by UVB0.0162 W m–2. Frequency of bleaching increased with increasing PAR photon flux density and with exposure to shorter wavelengths, with or without an increase in total energy. Growth was significantly inhibited by UVB at 0.105 W m–2. Specimens in treatments exposed to UVB to PAR ratios >0.003 became dark in color, rather than bleaching, which previous cytological studies indicate is a photo-protective response. Implications of these experiments are that environmental factors that affect either the spectral quality or quantity of solar radiation can influence bleaching in Amphistegina.Communicated by P.W. Sammarco, Chauvin
Dana E. WilliamsEmail: Phone: +1-305- 3614569Fax: +1-305-3614499
  相似文献   

6.
Two picophytoplankters,Prochlorococcus marinus andSynechococcus sp., were isolated from the bottom of the euphotic zone (150 m depth) in the western Pacifie Ocean. The concentration ofP. marinus at this depth was more than 104 cells ml–1 while that ofSynechococcus sp. was less than 102 cells ml–1. TheP. marinus isolate has a high divinyl-chlorophylla:b ratio similar to that of the Mediterranean strain, while theSynechococcus sp. isolate is of the phycourobilinrich type. The growth rate ofP. marinus was higher thanSynechococcus sp. when both were cultured under weak blue-green to blue-violet light (ca. 2 E m–2 s–1). While the chlorophyll-specific absorption spectra showed higher values inSynechococcus sp., the photosynthetic action spectre revealed thatP. marinus was able to use blue-violet light, whereasSynechococcus sp. was able to use blue-green light, more efficiently for photosynthesis. The photosynthetic quantum yield ofP. marinus was higher than that ofSynechococcus sp. at any wavelength between 400 and 700 nm. The calculated in situ photosynthesis rates per Gell volume forP. marinus were estimated to be higher than forSynechococcus sp. at 50 and 150 m depth. These results indicate thatP. marinus photosynthetically surpassesSynechococcus sp. in the blue-light-rieh environment of the oceanic euphotic zone. This may be why the former predominates at depths in temperate to tropical open ocean waters.  相似文献   

7.
The colonial ascidian Distaplia cylindrica occurs both as scattered individual colonies or in gardens of colonies in fine-grained soft substrata below 20 m depths off Anvers Island along the Antarctic Peninsula. Individual colonies, shaped as tall rod-like cylinders and anchored in the sediments by a bulbous base, may measure up to 7 m in height. D. cylindrica represent a considerable source of materials and energy for prospective predators, as well as potential surface area for fouling organisms. Nonetheless, qualitative in situ observations provided no evidence of predation by sympatric predators such as abundant sea stars, nor obvious biofouling of colony surfaces. Mean energy content of whole-colony tissue of D. cylindrica was relatively high for an ascidian (14.7 kJ g–1 dry wt), with most of this energy attributable to protein (12.7 kJ g–1 dry wt). The sympatric omnivorous sea star Odontaster validus consistently rejected pieces of D. cylindrica colonies in laboratory feeding assays, while readily ingesting similarly sized alginate food pellets. Feeding deterrence was determined to be attributable to defensive chemistry, as colonies of D. cylindrica are nutritionally attractive and lack physical protection (conspicuous skeletal elements or a tough outer tunic), and O. validus display significant feeding-deterrent responses to alginate food pellets containing tissue-level concentrations of organic extracts. In addition, high acidity measured on outer colony surfaces (pH 1.5) as well as homogenized whole-colony tissues (pH 2.5) are indicative of surface sequestration of inorganic acids. Agar food pellets prepared at tissue levels of acidity resulted in significant feeding deterrence in sea stars. Thus, both inorganic acids and secondary metabolites contribute to chemical feeding defenses. D. cylindrica also possesses potent antifoulant secondary metabolites. Tissue-level concentrations of hydrophilic and lipophilic extracts caused significant mortality in a sympatric pennate diatom. Chemical feeding deterrents and antifoulants are likely to contribute to the abundance of D. cylindrica and, in turn, play a role in regulating energy transfer and community structure in benthic marine environments surrounding Antarctica.Communicated by P.W. Sammarco, Chauvin  相似文献   

8.
Juveniles of the prawnPenaeus chinensis (3.96 ±0.18 cm, 0.36±0.06 g) reared in Taiwan in 1989 were exposed to different concentrations of ammonia and nitrite, by a static renewal method in 33 seawater at pH 7.94 and at 26 °C. The 24, 48, 96 and 120 h LC50 (median lethal concentration) of ammonia were 3.29, 2.10, 1.53 and 1.44 mg l–1 for NH3-N (un-ionized ammonia as nitrogen) and 79.97, 51.14, 37.00 and 35.09 mg l–1 for ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24, 96, 120, 144 and 192 h LC50 of nitrite-N were 339, 37.71, 29.18, 26.98 and 22.95 mg l–1. The LC50 decreased with increasing exposure time. During the first 96 h,P. chinesis juveniles were more susceptible to ammonia than nitrite. However, prawns were less tolerant to nitrite than ammonia when exposed for more than 96 h. The threshold was found at 120 and 192 h for ammonia and nitrite, respectively, on the toxicity curves. Incipient LC50 was 1.44 mg l–1 for NH3-N, 35.09 mg l–1 for ammonia-N and 22.95 mg l–1 for nitrite-N. The safe value forP. chinensis juveniles was 0.14, 3.51 and 2.30 mg l–1, respectively.  相似文献   

9.
The current study determined behavioral and electrophysiological photosensitivities for three species of mesopelagic crustaceans: Pasiphaea multidentata Esmark, 1866 (Decapoda: Pasiphaeidae), Sergestes arcticus Kröyer, 1855 (Decapoda: Sergestidae), and Meganyctiphanes norvegica M. Sars, 1857 (Euphausiacea: Euphausiidae). In addition, in situ quantifications of the species vertical distributions in relation to downwelling irradiances were also determined in two locations in the northwest Atlantic Ocean, Wilkinson Basin (WB) and Oceanographer Canyon (OC). Data are from six 2-week cruises between June and September from 1995 to 2001. P. multidentata and M. norvegica were the most abundant large crustaceans in WB, and S. arcticus and M. norvegica were the most abundant large crustaceans in OC. The behavioral light sensitivity thresholds of P. multidentata and M. norvegica from WB were both 107 photons cm–2 s–1 and those of S. arcticus and M. norvegica from OC were both 108 photons cm–2 s–1. Electrophysiologically, P. multidentata was significantly more sensitive than M. norvegica from either location, S. arcticus was significantly more sensitive than M. norvegica from OC, and M. norvegica from WB was significantly more sensitive than M. norvegica from OC. A correlation was found between electrophysiologically measured photosensitivity and downwelling irradiance, with the most sensitive species, P. multidentata and S. arcticus, associated with the lowest irradiance at daytime depths. The photosensitivities of M. norvegica collected from the clearer waters of OC were significantly lower than those of individuals collected from the more turbid WB waters. These results indicate that downwelling irradiance has a significant impact on interspecies and intraspecies vertical distribution patterns in the mesopelagic realm.Communicated by J.P. Grassle, New Brunswick  相似文献   

10.
This study is the first systematic attempt to use oxygen and carbon isotopes in modern brachiopods to investigate seasonality and growth rates. A comparison of oxygen-isotope analyses of shells of living specimens ofLaqueus californianus dredged from 80 and 130 m off Santa Catalina Island, California, to available hydrographie data indicates that this articulate brachiopod secretes its shell in or close to oxygen isotopic equilibrium with ambient seawater. Periodic oxygen-isotope depletions appear to result from El Nino events. Unexpectedly low 13C values associated with the 1983 El Nino may be explained by increased bacterial activity or organic loading into the Southern California Bight associated with these warm-water pulses. Growth rates determined from annual cycles in 18O records are variable, but generally average between 2 and 3 mm yr–1 for mature individuals. Because of the longevity ofL. californianus,18O profiles provide high-resolution seasonal temperature records spanning one to two decades. Our data suggest that oxygen isotopes in brachiopod shells can be utilized as monitors of environmental change in the subeuphotic zone.  相似文献   

11.
The distribution, feeding and oxygen consumption of Calanus sinicus were studied in August 2001 on a transect across Yellow Sea Cold Bottom Waters (YSCBW) and two additional transects nearby. The distribution of C. sinicus adults and copepodites stage CV appeared to be well correlated with water temperature. They tended to concentrate in the YSCBW (>10,000 ind. m–2) to avoid high surface temperature. Gut pigment contents varied from 0.44 to 2.53 ng chlorophyll a equivalents (chl a equiv.) ind.–1 for adults, and from 0.24 to 2.24 ng chl a equiv. ind.–1 for CV copepodites. We found no relationship between gut pigment contents and the ambient chl a concentrations. Although the gut evacuation rate constants are consistent with those measured for other copepods, their low gut pigment contents meant an estimated daily herbivorous ingestion of <3% of body carbon in the YSCBW and <10% outside the YSCBW. However, based on estimates of clearance rates, C. sinicus feeds actively whether in the YSCBW or not, so the low ingestion rates probably reflect shortage of food. Oxygen consumption rates of C. sinicus ranged from 0.21 to 0.84 l O2 ind.–1 h–1, with high rates often associated with high temperature. From the oxygen consumption rates, daily loss of body carbon was estimated to be 4.0–13.7%, which exceeds our estimates of their carbon ingestion rates. C. sinicus was probably not in diapause, either within or outside the YSCBW, but this cold-water layer provides C. sinicus with a refuge to live through the hot, low-food summer.Communicated by T. Ikeda, Hakodate  相似文献   

12.
We undertook a detailed analysis of the lipid composition ofSolemya velum (Say), a bivalve containing endosymbiotic chemoautotrophic bacteria, in order to determine the presence of lipid biomarkers of endosymbiont activity. The symbiont-free clamMya arenaria (L.) and the sulfur-oxidizing bacteriumThiomicrospira crunogena (Jannasch et al.) were analyzed for comparative purposes. The 13C ratios of the fatty acids and sterols were also measured to elucidate potential carbon sources for the lipids of each bivalve species. Both fatty acid and sterol composition differed markedly between the two bivalves. The lipids ofS. velum were characterized by large amounts of 18: 17 (cis-vaccenic acid), 16:0, and 16 : 17 fatty acids, and low concentrations of the highly unsaturated plant-derived fatty acids characteristic of most marine bivalves. Cholest-5-en-3-ol (cholesterol) accounted for greater than 95% of the sterols inS. velum. In contrast,M. arenaria had fatty acid and sterol compositions similar to typical marine bivalves and was characterized by large amounts of the highly unsaturated fatty acids 20 : 53 and 22 : 63 and a variety of plant-derived sterols. The fatty acids ofT. crunogena were similar to those ofS. velum and were dominated by 18:17, 16:0 and 16:17 fatty acids. Thecis-vaccenic acid found inS. velum is almost certainly symbiontderived and serves as a potential biomarker for symbiontlipid incorporation by the host. The high concentrations ofcis-vaccenic acid (up to 35% of the total fatty acid content) in both symbiont-containing and symbiont-free tissues ofS. velum demonstrate the importance of the endosymbionts in the lipid metabolism of this bivalve. The presence ofcis-vaccenic acid in all the major lipid classes ofS. velum demonstrates both incorporation and utilization of this compound. The 13C ratios of the fatty acids and sterols ofS. velum were significantly lighter (–38.4 to –45.3) than those ofM. arenaria (–23.8 to – 24.2) and were similar to the values found for the fatty acids ofT. crunogena (–45); this suggests that the lipids ofS. velum are either derived directly from the endosymbionts or are synthesized using endosymbiontderived carbon.Woods Hole Oceanographic Institution Contribution No. 7356Please address all correspondence and reprint requests to Dr Conway at her present address: Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA  相似文献   

13.
Gas-liquid interface measurements were conducted in a strongly turbulent free-surface flow (i.e., stepped cascade). Local void fractions, bubble count rates, bubble size distributions and gas-liquid interface areas were measured simultaneously in the air-water flow region using resistivity probes. The results highlight the air-water mass transfer potential of a stepped cascade with measured specific interface area over 650 m–1 and depth-average specific area up to 310 m–1. A comparison between single-tip and double-tip resistivity probes suggests that simple robust single-tip probes may provide accurate, although conservative, gas-liquid interfacial properties. The latter device may be used in the field and in prototype plants. Notation a = specific interface area (m–1); a mean = depth-average specific interface area (m–1): a mean=frac1Y 90limits sup> Y 90 sup 0(1–C)dy; C = local void fraction; C gas = dissolved gas concentration (kg m–3); C mean = depth-average mean air concentration defined as: C mean=1–d/Y 90; C s = saturation concentration (kg m–3); D = dimensionless air bubble diffusivity (defined by [1]); d = equivalent clear-water flow depth (m): d=limits sup> Y 90 sup 0(1–C) dy; dab = air bubble diameter (m); dc = critical flow depth (m); for a rectangular channel: d c=sqrt[3]q w 2/g; F = air bubble count rate (Hz); F max = maximum bubble count rate (Hz), often observed for C=50%; g = gravity acceleration (m s–2); h = step height (m); K L = liquid film coefficient (m s–1); K = integration constant defined as: K=tanh –1 sqrt0.1)+(2D)–1 [1]; L = chute length (m); N = velocity distribution exponent; ———– *Corresponding author, E-mail: h.chanson@mailbox.uq.edu.au Q w = water discharge (m3 s–1); q w = water discharge per unit width m2 s–1); t = time (s); V = local velocity (m s–1); V c = critical flow velocity (m s–1); for a rectangular channel: V c=sqrt[3]q w g V max = maximum air-water velocity (m s–1); V 90 = characteristic air-water velocity (m s–1) where C = 90%; W = channel width (m); x = longitudinal distance (m) measured along the flow direction (i.e., parallel to the pseudo-bottom formed by the step edges); y = distance (m) normal to the pseudo-bottom formed by the step edges; Y90 = characteristic distance (m) where C=0.90; Y 98 = characteristic distance (m) where C=0.98; = slope of pseudo-bottom by the step edges; = diameter (m).  相似文献   

14.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
We investigated the impact of copepods on the seston community in a mesocosm set-up, and assessed how the changes in food quantity, quality and size affected the condition of the grazers, by measuring the RNA:DNA ratios in different developmental stages of Calanus finmarchicus. Manipulated copepod densities did not affect the particulate carbon concentration in the mesocosms. On the other hand, chlorophyll a content increased with higher copepod densities, and increasing densities had a positive effect on seston food quality in the mesocosms, measured as C:N ratios and 3:6 fatty acid ratios. These food quality indicators were significantly correlated to the nutritional status of C. finmarchicus. In contrast to our expectations, these results suggest a lower copepod growth potential on higher quality food. However, in concordance with earlier studies, we found that when copepods were in high densities the large particles (>1000 µm3) decreased and that the smaller particles (<1000 µm3) increased in number. These patterns were closely linked to the condition of C. finmarchicus, which were of better condition (RNA:DNA ratios) with increasing biovolumes of large particles, and, conversely, lower RNA:DNA ratios with increasing biovolumes of smaller particles. Consequentially, the selective grazing by copepods stimulated increased biovolumes of smaller plankton, and this increase was responsible for the increased food quality, in terms of C:N and 3:6 ratios. Thus, we conclude that the decreasing growth potentials of C. finmarchicus were a result of a decrease of favourably sized food particles, induced by copepod grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The biology, population dynamics, and production of Tylos europaeus were studied in two sandy beaches of the western coast of Portugal. At both sites, reproduction occurred seasonally, from April to July, with only one new cohort produced per year. Regarding population dynamics, cohort-splitting events were detected in males at the beginning of the reproduction period (April/May), resulting in two groups with distinct growth rates (fast-growing vs slow-growing males). Different biological characteristics were consequently detected in these two groups, namely regarding body size, lifespan, and contribution to the reproductive effort. Lifespan was estimated as approximately 3 years, for females and fast-growing males, and 4 years for slow-growing males. Cohort-splitting among males appeared as a possible strategy to cope with the highly male-biased sex ratios observed, which could lead to a strong male-male competition for mating. T. europaeus appeared as an annual species, with a univoltine life-cycle (one generation per year), and iteroparous females reproducing twice during their lifespan. Average growth production (P) was estimated at 0.082 g.m–2.yr–1 AFDW (ash-free dry weight) and the average annual biomass () (standing stock) at 0.052 g.m–2, resulting in a P/ ratio of 1.58. These results produced baseline information for the construction of a population-dynamics model and highlighted the potential of this species as an environmental quality-assessment bioindicator on sandy shores.Communicated by S.A. Poulet, Roscoff  相似文献   

17.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

18.
Measurements of routine swimming speed, tail-flip escape responses, and oxygen consumptions were made of the deep-sea shrimp Acanthephyra eximia using autonomous landers in the Rhodos Basin at depths of up to 4,400 m and temperatures of 13–14.5°C. Routine swimming speeds at 4,200 m averaged 0.18 m s–1 or 3.09 body lengths s–1, approximately double those of functionally similar oceanic scavengers. During escape responses peak accelerations of 23 m s–2 or 630.6 body lengths s–2 were recorded, with animals reaching speeds of 1.61 m s–1 or 34.8 body lengths s–2. When compared to shallow-water decapods at similar temperatures these values are low for a lightly calcified shrimp such as A. eximia despite a maximum muscle mass specific power output of 90.0 W kg–1. A preliminary oxygen consumption measurement indicated similar rates to those of oceanic crustacean scavengers and shallower-living Mediterranean crustaceans once size and temperature had been taken into account. These animals appear to have high routine swimming speeds but low burst muscle performances. This suite of traits can be accounted for by high competition for limited resources in the eastern Mediterranean, but low selective pressure for burst swimming due to reductions in predator pressure.Communicated by J.P. Thorpe, Port Erin  相似文献   

19.
Transbranchial potentials (TP) and sodium or chloride fluxes were measured in an apparatus designed for the simultaneous perfusion of eight isolated gills of Uca rapax. In anterior gills perfused with U. rapax–saline (US) the TP varied almost linearly from-7.5 to +10 mV inside, and in posterior gills from +2 to-8.5 mV (inside), on exposure to salinities ranging from 8.7 through 52, i.e. 25 to 150% seawater (100%=34.6 S). Sodium influx and efflux in anterior gills exposed to US, 8.7 or 43.3 S (0.7 to 4.0 mmol h–1 g–1 dry wt) were always greater than in posterior gills (0.5 mmol h–1). The chloride fluxes were slightly smaller than sodium fluxes in anterior gills, while in the posterior gills the chloride influx (2.8 to 4.6 mmol h–1) was always larger than chloride efflux (0.6 to 1.1 mmol h–1) or the sodium fluxes. At least three ion-transport mechanisms may be present in these gills: (1) an internal ( = basolateral), ouabain-sensitive Na+, K+ pump, restricted to anterior gills; (2) a furosemide-sensitive Na+, K+, 2Cl (plus water) transporter, apparently restricted to posterior gills, and (3) a Na+ exchanger (and possibly other as yet unidentified ion transporters, as suggested by large increases of the chloride influxes caused by amiloride), probably located on the apical membranes of the epithelial cells of both gill types. The differential selectivity of the gills of U. rapax for sodium or chloride may limit the transbranchial movements of either ion, without a reduction of the overall permeability of these crabs.Communicated by N.H. Marcus, Tallahassee  相似文献   

20.
The prokaryotic green alga Prochloron sp. (Prochlorophyta) is found in symbiotic association with colonial didemnid ascidians that inhabit warm tropical waters in a broad range of light environments. We sought to determine the light-adaptation features of this alga in relation to the natural light environments in which the symbioses are found, and to characterize the temperature sensitivity of photosynthesis and respiration of Prochloron sp. in order to assess its physiological role in the productivity and distribution of the symbiosis. Colonies of the host ascidian Lissoclinum patella were collected from exposed and shaded habitats in a shallow lagoon in Palau, West Caroline Islands, during February and March, 1983. Some colonies from the two light habitats were maintained under conditions of high light (2 200 E m–2 s–1) and low light (400 E m–2 s–1) in running seawater tanks. The environments were characterized in terms of daily light quantum fluxes, daily periods of light-saturated photosynthesis (Hsat), and photon flux density levels. Prochloron sp. cells were isolated from the hosts and examined for their photosynthesis vs irradiance relationships, respiration, pigment content and photosynthetic unit features. In addition, daily P:R ratios, photosynthetic quotients, carbon balances and photosynthetic carbon release were also characterized. It was found that Prochloron sp. cells from low-light colonies possessed lower chlorophyll a/b ratios, larger photosynthetic units sizes based on both reaction I and reaction II, similar numbers of reaction center I and reaction center II per cell, lower respiration levels, and lower Pmax values than cells from high-light colonies. Cells isolated from low-light colonies showed photoinhibition of Pmax at photon flux densities above 800 E m–2 s–1. However, because the host tissue attenuates about 60 to 80% of the incident irradiance, it is unlikely that these cells are normally photoinhibited in hospite. Collectively, the light-adaptation features of Prochloron sp. were more similar to those of eukaryotic algae and vascular plant chloroplasts than to those of cyanobacteria, and the responses were more sensitive to the daily flux of photosynthetic quantum than to photon flux density per se. Calculation of daily minimum carbon balances indicated that, though high-light cells had daily P:R ratios of 1.0 compared to 4.6 for low-light cells, the cells from the two different light environments showed nearly identical daily carbon gains. Cells isolated from high-light colonies released between 15 and 20% of their photosynthetically-fixed carbon, levels sufficient to be important in the nutrition of the host. Q10 responses of photosynthesis and respiration in Prochloron sp. cells exposed briefly (15–45 min) to temperatures between 15° and 45°C revealed a discontinuity in the photosynthetic response at the ambient growth temperatures. The photosynthetic rates were found to be more than twice as sensitive to temperatures below ambient (Q10=3.47) than to temperatures above ambient (Q10=1.47). The Q10 for respiration was constant (Q10=1.66) over the temperature range examined. It appears that the photosynthetic temperature sensitivity of Prochloron sp. may restrict its distribution to warmer tropical waters. The ecological implications of these findings are discussed in relation to published data on other symbiotic systems and free-living algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号