首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viña A  Echavarria FR  Rundquist DC 《Ambio》2004,33(3):118-125
This study uses Landsat satellite data to document the rates and patterns of land-cover change along a portion of the Colombia-Ecuador border during a 23-yr period (1973-1996). Human colonization has resulted in extensive deforestation in both countries. Satellite change detection analysis showed that the annual rates of deforestation were considerably higher for the Colombian side of the border. In addition, loss of forest cover on the Colombian side for the study period was almost 43%, while only 22% on the Ecuadorian side. The study found that there is no single factor driving deforestation on either side of the border, but concluded that the higher rates on the Colombian side may be due to higher colonization pressures and intensification of illegal coca cultivation. On the Ecuador side of the border the satellite images documented patterns of deforestation that reflected road networks associated with oil exploration and development.  相似文献   

2.
Izquierdo AE  Grau HR  Aide TM 《Ambio》2011,40(3):298-309
Global trends of increasing rural–urban migration and population urbanization could provide opportunities for nature conservation, particularly in regions where deforestation is driven by subsistence agriculture. We analyzed the role of rural population as a driver of deforestation and its contribution to urban population growth from 1970 to the present in the Atlantic Forest of Argentina, a global conservation priority. We created future land-use-cover scenarios based on human demographic parameters and the relationship between rural population and land-cover change between 1970 and 2006. In 2006, native forest covered 50% of the province, but by 2030 all scenarios predicted a decrease that ranged from 18 to 39% forest cover. Between 1970 and 2001, rural migrants represented 20% of urban population growth and are expected to represent less than 10% by 2030. This modeling approach shows how rural–urban migration and land-use planning can favor nature conservation with little impact on urban areas.  相似文献   

3.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

4.
Analysing the drivers of deforestation and forest degradation in conservation landscapes can provide crucial information for conservation management. While rates of forest loss can be measured through remote sensing, on the ground information is needed to confirm the commodities and actors behind deforestation. We administered a questionnaire to Wildlife Conservation Society’s landscape managers to assess the deforestation drivers in 28 tropical conservation landscapes. Commercial and subsistence agriculture were the main drivers of deforestation, followed by settlement expansion and infrastructure development. Rice, rubber, cassava and maize were the crops most frequently cited as drivers of deforestation in these emblematic conservation landscapes. Landscape managers expected deforestation trends to continue at similar or greater magnitude in the future, calling for urgent measures to mitigate these trends.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01325-9) contains supplementary material, which is available to authorized users.  相似文献   

5.
The village with its characteristic zones of different land use from the center to the periphery is a basic unit of Europe's cultural landscapes. However, loss of the authentic pre-industrial village structure characterized by a fine-grained structure of arable land and wooded grasslands is a threat to both cultural heritage and biodiversity in many rural landscapes. Therefore, it is important that the extent and rate of change of such authentic villages in a landscape can be monitored. We studied to what extent loss of authenticity with increasing time after abandonment can be assessed by quantitative analysis and visual interpretation of satellite images. The study was carried out in the Bieszczady Mountains, SE Poland in 1999. Using Landsat Thematic Mapper data from 1998, both the grain size of landscape elements (size of fields) and land-cover composition (encroachment of shrub and forest) were quantitatively described 6 type villages representing different stages of deterioration of the authentic village structure. Historical maps were used to delineate the border of the villages and the former extension of forest and open land was measured. The present land use and the degree of abandonment expressed as grain size and forest encroachment were mapped using satellite data. Deterioration occurred along 2 transformation paths: abandonment and ultimately becoming forest, or intensified agriculture, respectively. To validate these results we classified 22 other villages in a 1000 km2 area by visual interpretation of the original satellite images into 1 of 4 types. We then collected historical data on human population changes over the past six decades. The classification of village authenticity was clearly related to the rate of human population decline. We address the importance of validating and applying this approach for rapid assessment of the authenticity of cultural landscapes in European regions being subject to ongoing as well as expected future change, related to expansion of the European Union. Finally, we argue that the village represents a scale at which integration of natural and social sciences is possible.  相似文献   

6.
In the San Bernardino Mountains of southern California, ozone (O(3)) concentrations have been elevated since the 1950s with peaks reaching 600ppb and summer seasonal averages >100ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O(3) concentrations decreased with peaks approximately 180ppb and approximately 60ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O(3) concentrations (2-week averages) for individual years were much higher in western sites (58-69ppb) than eastern sites (44-50ppb). Potential O(3) phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5ppmh, SUM60 - 112.7ppmh, W126 - 98.3ppmh, and AOT40 - 75ppmh, representing the highest values reported for mountain areas in North America and Europe.  相似文献   

7.
Zhao S  Fang J 《Ambio》2004,33(6):311-315
Human activities can have a remarkable effect on land-cover patterns over time. This study characterized long-term (1930s-1998) land-cover changes in Dongting Lake area in the Central Yangtze River, China, by digitalizing historical topographical maps for the 1930s and 1950s and interpreting satellite remote sensing data for 1978, 1989, and 1998. The study indicates that land-cover patterns in Dongting Lake area have been greatly altered by impoldering and subsequent lake restoration activities in the past 70 years. There are two distinct periods of change characterized by impoldering (1930s-1978) and lake restoration (1978-1998). In the former period, cropland increased sharply at the cost of a drop in other land-cover types, which had resulted in significant negative consequences, while the pattern of land-cover changes reversed in the later period.  相似文献   

8.
The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human–environment interactions.  相似文献   

9.
Siikamäki J  Newbold SC 《Ambio》2012,41(Z1):78-89
Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.  相似文献   

10.
The REDD+ scheme of the United Nations intends to offer developing countries financial incentives to reduce the rates of deforestation and forest degradation for reducing global CO2 emissions. This is combined with building carbon stocks in existing wooded ecosystems and fostering other soil, biodiversity and water conservation objectives. Successful application of REDD+ to the Xylophone Triangle of West Africa faces substantial challenges and risks to both meeting REDD+ objectives and to the local people’s rights and livelihoods. The transnationality of the culturally coherent area requires collaboration of three national governments. The opportunities, however, are great to capitalize on the region’s biodiversity, the well-developed traditional ecological knowledge and the use of local medicinal plants as an integral part of the agro-ecosystem. Possibilities open to, not only sequester carbon, but also to increase the resilience of the ecosystem and of independent rural livelihoods in the face of climate change and globalization.  相似文献   

11.
Stibig HJ  Malingreau JP 《Ambio》2003,32(7):469-475
The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.  相似文献   

12.
Abstract

Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1–0.2 °C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 °C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5–1 °C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 °C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2–2.5 °C above its 1750 value of approximately 15 °C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modern society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

13.
This study presents the spatial distribution, degree of contamination and storage capacity of Hg in surface forest and pasture soils from Alta Floresta, Southern Amazon, a significant gold mining site from 1980 to 1996. During that period, average annual gold production was about 6.5 tons, with an estimated Hg annual emission to the environment of about 8.8 tons, 60-80% of it being emitted to the atmosphere. Mercury sources to the region are mining sites and gold-dealer shops at the city of Alta Floresta, where gold is smelted and commercialized. Mercury concentrations in forest soils (15-248 ng g(-1), average=61.9 ng g(-1)) were 1.5-3.0 times higher than in pasture soils (10-74 ng g(-1), average=33.8 ng g(-1)), suggesting strong re-mobilization after deforestation. Highest Hg concentrations were found within a distance of 20-30 km from mining sites in both soil types. The influence of the refining operations within the city of Alta Floresta, however, was less clear. Somewhat higher concentrations were observed only within a 5 km radius from the city center where gold-dealer shops are located. Wind direction controls the spatial distribution of Hg. Background concentrations (15-50 ng g(-1)) were generally found at the outer perimeter of the sampling grid, about 40 km from sources. This suggests that Hg released from mining and refining activities undergoes rapid deposition. Estimated cumulative Hg burdens for the first 10 cm of soil averaged 8.3 mg m(-2) and 4.9 mg m(-2), for forest and pasture soils respectively and compare well with ultisols and hydromorphic oxisols, but were lower than those found in yellow-red and yellow latosols and podsols from other Amazonian areas. Our results show that changing land use in the Amazon is a strong re-mobilizing agent of Hg deposited on soils from the atmosphere.  相似文献   

14.
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest.  相似文献   

15.
Spatial and temporal variation in the atmospheric deposition of PAHs to soil was examined by deploying experimental soils for approximately 165 days and conducting a survey of forest soils at several sites along an urban-rural transect extending from downtown Toronto to approximately 80 km north of the city. PAH concentrations decreased with distance from the urban centre-by a factor of 2 and 60 for the experimental and forest soils respectively. The large gradient for the forest soils is generally consistent with air concentrations of PAHs measured using high volume and passive air samplers. The smaller gradient for the experimental soils was due to kinetic limitations of PAH accumulation and the relatively short deployment period of approximately 165 days. Mean effective deposition velocities (gas+particle) for the full range of PAHs for the experimental soils at the urban, suburban, and the rural sites were 2, 31 and 26 cm s(-1), respectively. These were incorporated into a dynamic model that was used to assess the long-term uptake of PAHs in forest soils. Model results indicate that lower molecular weight PAHs may achieve equilibrium and become involved in soil-air exchange whereas higher molecular weight PAHs are accumulated for much longer time periods.  相似文献   

16.
Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 10(12) g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the eastern US. A single storm can convert the equivalent of 10% of the total annual carbon sequestrated by US forests into dead and downed biomass. Given that forests require at least 15 years to recover from a severe storm, a large amount of forest carbon is lost either directly (through biomass destruction) or indirectly (through lost carbon sequestration capacity) due to hurricanes. Only 15% of the total carbon in destroyed timber is salvaged following a major hurricane. The remainder of the carbon is left to decompose and eventually return to the atmosphere. Short-term increases in forest productivity due to increased nutrient inputs from detritus are not fully compensated by reduced stem stocking, and the recovery time needed to recover leaf area. Therefore, hurricanes are a significant factor in reducing short-term carbon storage in US forests.  相似文献   

17.
Halting forest loss and achieving sustainable development in an equitable manner require state, non-state actors, and entire societies in the Global North and South to tackle deeply established patterns of inequality and power relations embedded in forest frontiers. Forest and climate governance in the Global South can provide an avenue for the transformational change needed—yet, does it? We analyse the politics and power in four cases of mitigation, adaptation, and development arenas. We use a political economy lens to explore the transformations taking place when climate policy meets specific forest frontiers in the Global South, where international, national and local institutions, interests, ideas, and information are at play. We argue that lasting and equitable outcomes will require a strong discursive shift within dominant institutions and among policy actors to redress policies that place responsibilities and burdens on local people in the Global South, while benefits from deforestation and maladaptation are taken elsewhere. What is missing is a shared transformational objective and priority to keep forests standing among all those involved from afar in the major forest frontiers in the tropics.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01602-1.  相似文献   

18.
The goal of this study is to investigate the impact of deforestation on ozone dynamics and deposition in the Brazilian Amazon basin. This goal is accomplished through i) analyses of ozone levels and deposition rates at a deforested site during the rainy season; and ii) comparisons of these data with similar information derived at a forest. At the pasture site maximum ozone mixing ratios reach 20 parts per billion on a volume basis (ppbv) but about 6 ppbv prevail over the forest. Maximum ozone deposition velocities for pastures can reach 0.7 cm s-1, which is about threefold lower than values derived for forests. Combining ozone abundance and deposition velocities, pasture maximum ozone fluxes reach approximately 0.2 microgram (ozone) m-2 s-1. This flux represents approximately 70% of the deposition rates measured over the forest. Hence, this study suggests that conversion of rainforests to pastures could lead to a net reduction (30%) in the ozone sink in the Amazon.  相似文献   

19.
Benhin JK 《Ambio》2006,35(1):9-16
Despite the important role that tropical forests play in human existence, their depletion, especially in the developing world, continue relentlessly. Agriculture has been cited as the major cause of this depletion. This paper discusses two main theoretical underpinnings for the role of agriculture in tropical deforestation. First, the forest biomass as input in agricultural production, and second, the competition between agriculture and forestry underlined by their relative marginal benefits. These are supported by empirical evidence from selected countries in Africa and South America. The paper suggests a need to find a win-win situation to control the spate of tropical deforestation. This may imply improved technologies in the agriculture sector in the developing world, which would lead both to increased production in the agriculture sector, and would also help control the use of tropical forest as an input in agriculture production.  相似文献   

20.
Anthropogenic deforestation has shaped ecosystems worldwide. In subarctic ecosystems, primarily inhabited by native peoples, deforestation is generally considered to be mainly associated with the industrial period. Here we examined mechanisms underlying deforestation a thousand years ago in a high-mountain valley with settlement artifacts located in subarctic Scandinavia. Using the Heureka Forestry Decision Support System, we modeled pre-settlement conditions and effects of tree cutting on forest cover. To examine lack of regeneration and present nutrient status, we analyzed soil nitrogen. We found that tree cutting could have deforested the valley within some hundred years. Overexploitation left the soil depleted beyond the capacity of re-establishment of trees. We suggest that pre-historical deforestation has occurred also in subarctic ecosystems and that ecosystem boundaries were especially vulnerable to this process. This study improves our understanding of mechanisms behind human-induced ecosystem transformations and tree-line changes, and of the concept of wilderness in the Scandinavian mountain range.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0634-z) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号