首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
● Environmental parameters affected functional bacteria and network associations. ● The structure and interactions of AS networks changed greatly within tanks. ● Anoxic co-occurrence network was more unstable and easily influenced. ● Composition of functional bacteria had a seasonal succession pattern. Tetrasphaera was the major PAO in spring and winter leading a better P removal. Understanding the structures and dynamics of bacterial communities in activated sludge (AS) in full-scale wastewater treatment plants (WWTPs) is of both engineering and ecological significance. Previous investigations have mainly focused on the AS communities of WWTP aeration tanks, and the differences and interactions between the communities in anaerobic and anoxic tanks of the AS system remain poorly understood. Here, we investigated the structures of bacterial communities and their inter-connections in three tanks (anaerobic, anoxic, and aerobic) and influent from a full-scale WWTP with conventional anaerobic/anoxic/aerobic (A/A/O) process over a year to explore their functionality and network differentiation. High-throughput sequencing showed that community compositions did not differ appreciably between the different tanks, likely due to the continuous sludge community interchange between tanks. However, network analysis showed significant differences in inter-species relationships, OTU topological roles, and keystone populations in the different AS communities. Moreover, the anoxic network is expected to be more unstable and easily affected by environmental disturbance. Tank-associated environmental factors, including dissolved oxygen, pH, and nutrients, were found to affect the relative abundance of functional genera (i.e., AOB, NOB, PAOs, and denitrifiers), suggesting that these groups were more susceptible to environmental variables than other bacteria. Therefore, this work could assist in improving our understanding of tank-associated microbial ecology, particularly the response of functional bacteria to seasonal variations in WWTPs employing A/A/O process.  相似文献   

2.
Biofilm is an effective simultaneous denitrification and in situ sludge reduction system, and the characteristics of different biofilm carrier have important implications for biofilm growth and in situ sludge reduction. In this study, the performance and mechanism of in situ sludge reduction were compared between FSC-SBBR and SC-SBBR with constructed by composite floating spherical carriers (FSC) and multi-faceted polyethylene suspension carriers (SC), respectively. The variation of EPS concentration indicated that the biofilm formation of FSC was faster than SC. Compared with SCSBBR, the FSC-SBBR yielded 0.16 g MLSS/g COD, almost 27.27% less sludge. The average removal rates of COD and NH4+-N were 93.39% and 96.66%, respectively, which were 5.21% and 1.43% higher than the average removal rate of SC-SBBR. Investigation of the mechanisms of sludge reduction revealed that, energy uncoupling metabolism and sludge decay were the main factors for sludge reduction inducing 43.13% and 49.65% less sludge, respectively, in FSC-SBBR. EEM fluorescence spectroscopy and SUVA analysis showed that the hydrolytic capacity of biofilm attached in FSC was stronger than those of SC, and the hydrolysis of EPS released more DOM contributed to lysis-cryptic growth metabolism. In additional, Bacteroidetes and Mizugakiibacter associated with sludge reduction were the dominant phylum and genus in FCS-SBBR. Thus, the effect of simultaneous in situ sludge reduction and pollutant removal in FSC-SBBR was better.
  相似文献   

3.
以作物推荐施肥模型为智能决策支撑,建立了基于地块的县域土壤资源管理与施肥决策信息系统。该系统采用C/S和B/S混合结构,采用Delphi开发语言和GIS组件技术,对GIS、数据库和模型进行耦合与集成,实现了土壤资源和决策信息查询、更新;养分资源管理决策与咨询;耕地质量评价;耕地环境质量预警等四个主要功能。系统在北京市平谷区得到应用和验证,应用表明该系统对于区域土壤资源信息高效管理、决策和面向公众的土壤信息服务具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号