首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
● A novel hybrid fuel cell (F-HFC) was fabricated. ● Pollutant degradation and synchronous electricity generation occurred in F-HFC. ● BiOCl-NH4PTA photocatalyst greatly improved electron transfer and charge separation. ● Pollutant could act as substrate directly in ambient conditions without pretreatment. ● The mechanism of the F-HFC was proposed and elucidated. The development of highly efficient energy conversion technologies to extract energy from wastewater is urgently needed, especially in facing of increasing energy and environment burdens. Here, we successfully fabricated a novel hybrid fuel cell with BiOCl-NH4PTA as photocatalyst. The polyoxometalate (NH4PTA) act as the acceptor of photoelectrons and could retard the recombination of photogenerated electrons and holes, which lead to superior photocatalytic degradation. By utilizing BiOCl-NH4PTA as photocatalysts and Pt/C air-cathode, we successfully constructed an electron and mass transfer enhanced photocatalytic hybrid fuel cell with flow-through field (F-HFC). In this novel fuel cell, dyes and biomass could be directly degraded and stable power output could be obtained. About 87 % of dyes could be degraded in 30 min irradiation and nearly 100 % removed within 90 min. The current density could reach up to ~267.1 μA/cm2; with maximum power density (Pmax) of ~16.2 μW/cm2 with Rhodamine B as organic pollutant in F-HFC. The power densities were 9.0 μW/cm2, 12.2 μW/cm2, and 13.9 μW/cm2 when using methyl orange (MO), glucose and starch as substrates, respectively. This hybrid fuel cell with BiOCl-NH4PTA composite fulfills the purpose of decontamination of aqueous organic pollutants and synchronous electricity generation. Moreover, the novel design cell with separated photodegradation unit and the electricity generation unit could bring potential practical application in water purification and energy recovery from wastewater.  相似文献   

2.
● Systematic information of recent progress in photocatalytic NO x removal is provided. ● The photocatalysts with special morphologies are reviewed and discussed. ● The morphology and photocatalytic NO x removal performance is related. The significant increase of NOx concentration causes severe damages to environment and human health. Light-driven photocatalytic technique affords an ideal solution for the removal of NOx at ambient conditions. To enhance the performance of NOx removal, 1D, 2D and 3D photocatalysts have been constructed as the light absorption and the separation of charge carriers can be manipulated through controlling the morphology of the photocatalyst. Related works mainly focused on the construction and modification of special morphologic photocatalyst, including element doping, heterostructure constructing, crystal facet exposing, defect sites introducing and so on. Moreover, the excellent performance of the photocatalytic NOx removal creates great awareness of the application, which has promising practical applications in NOx removal by paint (removing NOx indoor and outdoor) and pavement (degrading vehicle exhausts). For these considerations, recent advances in special morphologic photocatalysts for NOx removal was summarized and commented in this review. The purpose is to provide insights into understanding the relationship between morphology and photocatalytic performance, meanwhile, to promote the application of photocatalytic technology in NOx degradation.  相似文献   

3.
● Bimetallic oxide composite catalyst was designed for the urea-based SCR process. ● Surface chemical state and typical microstructure of catalyst was determined. ● Reaction route was improved based on intermediates and active site identification. ● TiO2@Al2O3 presents an obvious promotion for urea hydrolysis. As a promising option to provide gaseous NH3 for SCR system, catalytic urea hydrolysis has aroused great attention, and improving surface area and activity of catalysis are the crucial issues to be solved for efficient urea hydrolysis. Therefore, a composite metal oxide (TiO2@Al2O3) catalyst was prepared by a simple hydrothermal method, with mesoporous alumina (γ-Al2O3) as substrate. The results verify the mesoporous structure and submicron cluster of TiO2@Al2O3, with exposed crystal faces of (101) and (400) for TiO2 and γ-Al2O3, respectively. The electronegativity difference of Ti4+ and Al3+ changes the charge distribution scheme around the interface, which provides abundant acid/base sites to boost the urea hydrolysis. Consequently, for an optimal proportioning with nano TiO2 content at 10 wt.%, the hydrolysis efficiency can reach up to 35.2 % at 100 °C in 2 h, increasing by ~7.1 % than that of the blank experiment. 13C NMR spectrum measurements provide the impossible intermediate species during urea hydrolysis. Theoretical calculations are performed to clarify the efficient H2O decomposition at the interface of TiO2@Al2O3. The result offers a favorable technology for energy-efficiency urea hydrolysis.  相似文献   

4.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   

5.
● Collaborative treatment of plastics and OS was established to improve oil quality. ● PE addition successfully improved OS pyrolysis process by deploying H/Ceff ratio. ● Higher H/Ceff ratio promoted cracking to obtain more gas and light oil fractions. ● The degradation of PE and OS was promoted each other under their temperature range. Pyrolysis is an effective method to treat oily sludge (OS) due to its balance between oil recovery and nonhazardous disposal. However, tank bottom OS contains a high content of heavy fractions, which creates obstacles for pyrolysis due to the high activation energy. The incomplete cracking of macromolecules and secondary polymerization decreases the oil quality and causes coking during the operation process. This study introduced polyethylene (PE) into OS to deploy the H/Ceff ratio of feedstocks for pyrolysis. A strong interaction between OS and PE during copyrolysis could be observed from the TG/DTG curves. PE tightly participated in OS degradation, while OS also promoted PE degradation at high temperature. Apparent pits were generated in solid residues from copyrolysis, which was attributed to the uniform and violent gas release. In addition to HCN, other nitrogenous and sulphurous pollutants were inhibited. Accordingly, more gas products were attained after PE addition with more value-added compositions of alkanes and alkenes. Although the oil yield decreased after PE addition, the oil products from copyrolysis possessed higher heating values and higher contents of light fractions with short chains as well as paraffins. Consequently, copyrolysis of OS and PE significantly improved the pyrolysis process and resulted in high oil quality.  相似文献   

6.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

7.
p- CNB and IBP were selected, to explore factors determining ozonation outcomes. ● •OH contributed only 50 % to IBP removal, compared to the 90 % for p -CNB removal. ● IBP achieved fewer TOC removal and more by-product types and quantities. ● A longer ring-opening distance existed during the degradation of IBP. ● Multiple positions on both branches of IBP were attacked, consuming more oxidants. For aromatic monomer compounds (AMCs), ozonation outcomes were usually predicted by the substituents of the benzene ring based on the electron inductive effect. However, the predicted results were occasionally unreliable for complex substituents, and other factors caused concern. In this study, p-chloronitrobenzene (p-CNB) and ibuprofen (IBP) were selected for ozonation. According to the electron inductive theory, p-CNB should be less oxidizable, but the opposite was true. The higher rates of p-CNB were due to various sources of assistance. First, the hydroxyl radical (•OH) contributed 90 % to p-CNB removal at pH 7.0, while its contribution to IBP removal was 50 %. Other contributions came from molecular O3 oxidation. Second, p-CNB achieved 40 % of the total organic carbon (TOC) removal and fewer by-product types and quantities, when compared to the results for IBP. Third, the oxidation of p-CNB started with hydroxyl substitution reactions on the benzene ring; then, the ring opened. However, IBP was initially oxidized mainly on the butane branched chain, with a chain-shortening process occurring before the ring opened. Finally, the degradation pathway of p-CNB was single and consumed fewer oxidants. However, both branches of IBP were attacked simultaneously, and three degradation pathways that relied on more oxidants were proposed. All of these factors were determinants of the rapid removal of p-CNB.  相似文献   

8.
● Monthly hospitalization expenses are sensitive to increases in PM2.5 exposure. ● The increased PM2.5 causes patients with CHD and LRI to stay longer in the hospital. ● The impact of PM2.5 on total expenses for stroke is greater in southern China. ● Males may be more sensitive to air pollution than females. Air pollution has been a severe issue in China. Exposure to PM2.5 has adverse health effects and causes economic losses. This study investigated the economic impact of exposure to PM2.5 pollution using monthly city-level data covering 88.5 million urban employees in 2016 and 2017. This study mainly focused on three expenditure indicators to measure the economic impact considering lower respiratory infections (LRIs), coronary heart disease (CHD), and stroke. The results show that a 10 µg/m3 increase in PM2.5 would cause total monthly expenses of LRIs, CHD, and stroke to increase by 0.226%, 0.237%, and 0.374%, respectively. We also found that LRI, CHD, and stroke hospital admissions increased significantly by 10%, 8.42%, and 5.64%, respectively. Furthermore, the total hospital stays of LRIs, CHDs, and strokes increased by 2.49%, 2. 51%, and 1.64%, respectively. Our findings also suggest heterogeneous impacts of PM2.5 exposures by sex and across regions, but no statistical evidence shows significant differences between the older and younger adult subgroups. Our results provide several policy implications for reducing unequal public health expenditures in overpolluted countries.  相似文献   

9.
● Advances, challenges, and opportunities for catalytic water pollutant reduction. ● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction. ● New functionalities developed by screening and design of catalytic metal sites. ● Facile catalyst preparation approaches for convenient catalyst optimization. ● Rational design and non-decorative effort are essential for future work. In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.  相似文献   

10.
● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified. ● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L. ● Changing the substrate to ethanol did not notably increase the caproate production. ● Four genera, including Bifidobacterium , were revealed as caproate producers. ● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis. Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.  相似文献   

11.
● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42. ● β-content of the peptide was significantly enhanced in the presence of the PAHs. ● Nicotine made stable cluster with Aβ42 peptide via hydrogen bonds. ● Phenanthrene due to its small size, interfered with the Aβ42 monomer more strongly. Recent studies have correlated the chronic impact of ambient environmental pollutants like polycyclic aromatic hydrocarbons (PAHs) with the progression of neurodegenerative disorders, either by using statistical data from various cities, or via tracking biomarkers during in-vivo experiments. Among different neurodegenerative disorders, PAHs are known to cause increased risk for Alzheimer’s disease, related to the development of amyloid beta (Aβ) peptide oligomers. However, the complex molecular interactions between peptide monomers and organic pollutants remains obscured. In this work, we performed an atomistic molecular dynamics study via GROMACS to investigate the structure of Aβ42 peptide monomer in the presence of benzo[a]pyrene, nicotine, and phenanthrene. Interestingly the results revealed strong hydrophobic, and hydrogen-bond based interactions between Aβ peptides and these environmental pollutants that resulted in the formation of stable intermolecular clusters. The strong interactions affected the secondary structure of the Aβ42 peptide in the presence of the organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Overall, the undergoing changes in the secondary structure of the peptide monomer in the presence of the pollutants under the study indicates an enhanced formation of Aβ peptide oligomers, and consequent progression of Alzheimer’s disease.  相似文献   

12.
● A composite aerogel was simply obtained to remove various fluoroquinolones (FQs). ● The structural and textural properties of this composite aerogel are improved. ● Its adsorption capacity was improved at a low content of coexisting Cu2+ or Fe3+ ion. ● Two substructural analogs of FQs are compared to explore the adsorption mechanisms. ● This aerogel after saturated adsorption can be reused directly for Cu2+ adsorption. 3D composite aerogels (CMC-CG) composed of carboxymethyl cellulose and κ-carrageenan were designed and fabricated using the one-pot synthesis technique. The optimized CMC-CG showed a good mechanical property and a high swelling ratio due to its superior textural properties with a proper chemically cross-linked interpenetrating network structure. CMC-CG was utilized for the removal of various fluoroquinolones (FQs) from water and exhibited high adsorption performance because of effective electrostatic attraction and hydrogen bonding interactions. Ciprofloxacin (CIP), a popular FQ, was used as the representative. The optimized CMC-CG had a theoretically maximal CIP uptake of approximately 1.271 mmol/g at the pH of 5.0. The adsorption capacity of CMC-CG was improved in the presence of some cations, Cu2+ and Fe3+ ions, at a low concentration through the bridging effect but was reduced at a high concentration. The investigation of adsorption mechanisms, based on the adsorption kinetics, isotherms and thermodynamic study, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyses before and after adsorption, and changes in the adsorption performance of CMC-CG toward two molecular probes, further indicated that electrostatic attraction was the dominant interaction rather than hydrogen bonding in this adsorption. CMC-CG after saturated adsorption of CIP could be easily regenerated using a dilute NaCl aqueous solution and reused efficiently. Moreover, the disused aerogel could still be reused as a new adsorbent for effective adsorption of Cu2+ ion. Overall, this study suggested the promising applications of this composite aerogel as an eco-friendly, cost-effective, and recyclable adsorbent for the efficient removal of FQs from water.  相似文献   

13.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

14.
● A series of Cu-ZSM-5 catalysts were tested for DMF selective catalytic oxidation. ● Cu-6 nm samples showed the best catalytic activity and N2 selectivity. ● Redox properties and chemisorbed oxygen impact on DMF catalytic oxidation. ● Isolated Cu2+ species and weak acidity have effects on the generation of N2. N, N-Dimethylformamide (DMF), a nitrogen-containing volatile organic compound (NVOC) with high emissions from the spray industry, has attracted increasing attention. In this study, Cu-ZSM-5 catalysts with different CuO particle sizes of 3, 6, 9 and 12 nm were synthesized and tested for DMF selective catalytic oxidation. The crystal structure and physicochemical properties of the catalyst were studied by various characterization methods. The catalytic activity increases with increasing CuO particle size, and complete conversion can be achieved at 300–350 °C. The Cu-12 nm catalyst has the highest catalytic activity and can achieve complete conversion at 300 °C. The Cu-6 nm sample has the highest N2 selectivity at lower temperatures, reaching 95% at 300 °C. The activity of the catalysts is determined by the surface CuO cluster species, the bulk CuO species and the chemisorbed surface oxygen species. The high N2 selectivity of the catalyst is attributed to the ratio of isolated Cu2+ and bulk CuO species, and weak acidity is beneficial to the formation of N2. The results in this work will provide a new design of NVOC catalytic oxidation catalysts.  相似文献   

15.
● Dolomite-doped biochar/bentonite was synthesized for phosphate removal. ● DO/BB exhibited a high phosphate adsorption capacity in complex water environments. ● PVC membrane incorporated with DO/BB can capture low concentration phosphate. ● Electrostatic interaction, complexation and precipitation are main mechanisms. The removal of phosphate from wastewater using traditional biological or precipitation methods is a huge challenge. The use of high-performance adsorbents has been shown to address this problem. In this study, a novel composite adsorbent, composed of dolomite-doped biochar and bentonite (DO/BB), was first synthesized via co-pyrolysis. The combination of initial phosphate concentration of 100 mg/L and 1.6 g/L of DO/BB exhibited a high phosphate-adsorption capacity of 62 mg/g with a removal efficiency of 99.8%. It was also stable in complex water environments with various levels of solution pH, coexisting anions, high salinity, and humic acid. With this new composite, the phosphate concentration of the actual domestic sewage decreased from 9 mg/L to less than 1 mg/L, and the total nitrogen and chemical oxygen demand also decreased effectively. Further, the cross-flow treatment using a PVC membrane loaded with DO/BB (PVC-DO/BB), decreased the phosphate concentration from 1 to 0.08 mg/L, suggesting outstanding separation of phosphate pollutants via a combination of adsorption and separation. In addition, the removal of phosphate by the PVC-DO/BB membrane using NaOH solution as an eluent was almost 90% after 5 cycles. The kinetic, isotherm and XPS analysis before and after adsorption suggested that adsorption via a combination of electrostatic interaction, complexation and precipitation contributed to the excellent separation by the as-obtained membranes.  相似文献   

16.
● Increased DAAO offsets 3/4 of the decrease of DAAP in 2013–2020. ● DAAO increases are mainly due to O3 concentration increase and population aging. ● Health benefit from PM2.5 reduction after 2017 is larger than that before 2017. ● Reducing PM2.5 concentration by 1% results in 0.6% reduction of DAAP. ● Reducing O3 concentration by 1% results in 2% reduction of DAAO. PM2.5 concentration declined significantly nationwide, while O3 concentration increased in most regions in China in 2013–2020. Recent evidences proved that peak season O3 is related to increased death risk from non-accidental and respiratory diseases. Based on these new evidences, we estimate excess deaths associated with long-term exposure to ambient PM2.5 and O3 in China following the counterfactual analytic framework from Global Burden Disease. Excess deaths from non-accidental diseases associated with long-term exposure to ambient O3 in China reaches to 579 (95% confidential interval (CI): 93, 990) thousand in 2020, which has been significantly underestimated in previous studies. In addition, the increased excess deaths associated with long-term O3 exposure (234 (95% CI: 177, 282) thousand) in 2013–2020 offset three quarters of the avoided excess deaths (302 (95% CI: 244, 366) thousand) mainly due to PM2.5 exposure reduction. In key regions (the North China Plain, the Yangtze River Delta and the Fen-Wei Plain), the former is even larger than the latter, particularly in 2017–2020. Health benefit of PM2.5 concentration reduction offsets the adverse effects of population growth and aging on excess deaths attributed to PM2.5 exposure. Increase of excess deaths associated with O3 exposure is mainly due to the strong increase of O3 concentration, followed by population aging. Considering the faster population aging process in the future, collaborative control, and faster reduction of PM2.5 and O3 are needed to reduce the associated excess deaths.  相似文献   

17.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

18.
• UV-LED with shorter wavelength was beneficial for photocatalytic degradation. • SRNOM dramatically inhibit the degradation. • ·OH acts as the active radical in photocatalytic degradation. • Degradation mainly undergoes oxidation, hydrolysis and chain growth reactions. In this work, LED-based photocatalysis using mixed rutile and anatase phase TiO2 (P25) as the photocatalyst could effectively remove 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and methylisothiazolone (MIT) simultaneously, with removal efficiencies above 80% within 20 min. The photocatalytic degradation of both CMIT and MIT could be modeled using a pseudo-first-order rate equation. The photocatalytic degradation rates of CMIT and MIT under LED280 illumination were higher than under LED310 or LED360 illumination. At concentrations below 100 mg/L, the degradation rate of CMIT and MIT under LED illumination significantly increased with increasing catalyst dosage. Additionally, the effects of the chloride ion concentration, alkalinity and dissolved organic matter on the photocatalytic degradation reaction were also investigated. The ·OH free radicals were determined to play the primary role in the photocatalytic degradation reaction, with a degradation contribution of >95%. The photocatalytic degradation of CMIT and MIT mainly occurred via oxidation, hydrolysis, and chain growth reactions. Finally, the possible photocatalytic degradation pathways of CMIT and MIT over LED/P25 are proposed.  相似文献   

19.
● Present a general concept called “salinity exchange”. ● Salts transferred from seawater to treated wastewater until completely switch. ● Process demonstrated using a laboratory-scale electrodialysis system. ● High-quality desalinated water obtained at ~1 mL/min consuming < 1 kWh/m 3 energy. Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ~1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.  相似文献   

20.
● Adsorption of environmental deoxyribonucleic acid on biochar was studied. ● π−π interaction and electrostatic repulsion worked in the adsorption. ● Thermodynamics indicated the adsorption was spontaneous and endothermic. Environmental deoxyribonucleic acid (eDNA), which includes antibiotic resistance genes, is ubiquitous in the environment. The interactions between eDNA and biochar, a promising material widely used in soil amendment and water treatment, greatly affect the environmental behavior of eDNA. Hitherto few experimental evidences are available yet, especially on the information of thermodynamics and energy distribution to explains the interactions between biochar and eDNA. This study investigated the adsorption of herring sperm DNA (hsDNA) on pine sawdust biochar, with a specific emphasis on the adsorption thermodynamics and site energy distribution. The adsorption of hsDNA on biochar was enhanced by an increase in the pyrolysis and adsorption temperatures. The higher surface area, stronger π−π interaction, and weaker electrostatic repulsion between hsDNA and biochars prepared at high pyrolysis temperatures facilitated the adsorption of hsDNA. The thermodynamics indicated that the adsorption of hsDNA on biochar was spontaneous and endothermic. Therefore, higher temperature was beneficial for the adsorption of hsDNA on biochar; this was well explained by the increase in E* and F(E*) with the adsorption temperature. These results are useful for evaluating the migration and transformation of eDNA in the presence of biochar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号