首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Abstract

This study reports on new particle formation (NPF) and characteristic features observed from a rural site falling in the rainshadow of the Western Ghats in peninsular India. A total of 35 NPF events observed during August 2018 - January 2019 are classified and analyzed here. The apparent formation rates ranged from 0.2 to 10.0?cm–3 s–1, while the growth rates of nucleation mode particles ranged from 1.2 to 13.8?nm h–1. The frequency of occurrence was least during August (core monsoon) and highest during post-monsoon. The local winds were calm and southeasterly to easterly (from the urban centre) supplying the essential precursor gases during October and November, leading to a frequent occurrence of nucleation events. Observations suggest that an increased condensation sink could limit the NPF while promoting Aitken mode growth. The newly formed particles accounted for about 10–80% of the total aerosol concentration. These newly formed particles were able to act as cloud condensation nuclei after growing to approximately 50?nm with an average activation fraction of 0.4.  相似文献   

2.
SUMMARY

Data on 127 countries from the World Development Report (1993) are examined with respect to associations between the total fertility rate (TFR), infant mortality rate, life expectancy, female primary education, GNP and domestic water supply. A marked negative association between quantity of domestic water and the total fertility rate, independent of infant mortality, GNP and women's education, was found. However, water was not significantly associated with infant mortality, after controlling for CNP, female education and TFR. Further research at the micro- (community and individual) and macro-level is suggested to understand why and how water plays such an important role in TFR. At the same time, development policies and programmes need to give high priority to the domestic water supply at community as well as national levels.  相似文献   

3.
• A Passive Aeration Ditch was developed to treat decentralized wastewater. • A model was developed to describe the process performance. • A high C/N ratio facilitates microbial growth but nitrification deteriorates. • A high salinity decreases both organic and nitrogen contaminants removal. Decentralized wastewater containing elevated salinity is an emerging threat to the local environment and sanitation in remote coastal communities. Regarding the cost and treatment efficiencies, we propose a passive aeration ditch (PAD) using non-woven polyester fabric as a feasible bubbleless aerator and biofilm carrier for wastewater treatment. Consideration has been first given to PAD’s efficacy in treating saline decentralized wastewater, and then to the impact of chemical oxygen demand-to-nitrogen (C/N) ratio and salinity on biofilm formation. A multispecies model incorporating the salinity effect has been developed to depict the system performance and predict the microbial community. Results showed that the PAD system had great capacity for pollutants removal. The biofilm thickness increased at a higher C/N ratio because of the boost of aerobic heterotrophs and denitrifying bacteria, which consequently improved the COD and total nitrogen removal. However, this led to the deterioration of ammonia removal. Moreover, while a higher salinity benefited the biofilm growth, the contaminant removal efficiencies decreased because the salinity inhibited the activity of aerobic heterotrophs and reduced the abundance of nitrifying bacteria inside the biofilm. Based on the model simulation, feed water with salinity below 2% and C/N ratio in a range of 1 to 3 forms a biofilm that can reach relatively high organic matter and ammonia removal. These findings not only show the feasibility of PAD in treatment of saline decentralized wastewater, but also offer a systematic strategy to predict and optimize the process performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号