首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
● Organic solvent extracted fewer Cd/Pb in rapeseed oil than physical pressing. Brassica rapa transferred fewer Cd and Pb from seed to oil than Brassica napus . ● Carcinogenic risk mainly from Cd and worth more concern than noncarcinogenic risk. ● Organic solvent specially SLB pose less heath risk for oil than physical pressing. ● Rapeseed oil posed higher carcinogenic risk for rural residents than urban. Substitute planting with rapeseed offers promise for safely using large areas of Cd/Pb-contaminated farmland. Cd/Pb distributions during rapeseed oil production were investigated and health risks posed by the oil were assessed. Tests were performed using three cultivars (Brassica rapa SYH and ZS100 and Brassica napus QY-1) and four oil extraction techniques (mechanical and low-temperature pressing and n-hexane and subcritical low-temperature butane extraction). The amounts of Cd and Pb in oil were 0.73%–8.44% and 3.14%–11.76%, respectively, of the amounts in rapeseed and were strongly affected by the cultivar and oil extraction technique. The heavy metal (HM) concentrations were lower in solvent-extracted oil (particularly subcritical low-temperature butane extracted oil, in which HMs were not detected) than mechanically pressed oil. The Cd and Pb transfer indices were lower (meaning larger proportions of HMs were retained by the rapeseed meal) for B. rapa than B. napus. This was attributed to a high HM binding protein content of B. rapa seed. Health risks to humans were assessed using a probabilistic risk assessment model. The carcinogenic risk was mainly (97.1%–99.9%) caused by Cd and poses more concern than non-carcinogenic risk. Stronger health risks are posed by mechanically pressed than solvent-extracted oil, and higher carcinogenic risks are posed to people living in rural areas than urban areas. Substitute planting with B. rapa and extracting oil with organic solvent (preferably subcritical low-temperature butane) are optimal for safely utilizing Cd/Pb-contaminated soil. Attention should be paid to the health risks posed by Cd in oil to rural populations.  相似文献   

2.
● Presented coupled system enhanced biodegradation of antibiotic chloramphenicol. ● HRT and electrical stimulation modes were key influencing factors. ● Electrical stimulation had little effect on the chloramphenicol metabolic pathway. ● Microbial community structure varied with the voltage application mode. Exoelectrogenic biofilms have received considerable attention for their ability to enhance electron transfer between contaminants and electrodes in bioelectrochemical systems. In this study, we constructed anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltage application modes, voltages and hydraulic retention times (HRTs). In addition, we evaluated their capacity to remove chloramphenicol (CAP). AO-UBER can effectively mineralize CAP and its metabolites through electrical stimulation when an appropriate voltage is applied. The CAP removal efficiencies were ~81.1%±6.1% (intermittent voltage application mode) and 75.2%±4.6% (continuous voltage application mode) under 0.5 V supply voltage, which were ~21.5% and 15.6% greater than those in the control system without voltage applied, respectively. The removal efficiency is mainly attributed to the anaerobic chamber. High-throughput sequencing combined with catabolic pathway analysis indicated that electrical stimulation selectively enriched Megasphaera, Janthinobacterium, Pseudomonas, Emticicia, Zoogloea, Cloacibacterium and Cetobacterium, which are capable of denitrification, dechlorination and benzene ring cleavage, respectively. This study shows that under the intermittent voltage application mode, AO-UBERs are highly promising for treating antibiotic-contaminated wastewater.  相似文献   

3.
● Nitrifiers in WWTP were investigated at large spatial scale. ● AOB populations varied greatly but NOB populations were similar among cities. ● Drift dominated both AOB and NOB assembling processes. ● DO did not show a significant effect on NOB. ● NOB tended to cooperate with AOB and non-nitrifying microorganisms. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS.  相似文献   

4.
● Four Ca. Brocadia species were observed during the spontaneously enrichment. ● Novel anammox species SW510 and SW773 dominated the full-scale ecosystem. ● Urease and cyanase genes were detected in the new anammox genomes. ● Functional differentiation potentially facilitated co-occurrence of anammox species. The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities. However, the functional potentials and ecological differentiation of cooccurring anammox species in complex ecosystems have not been well elucidated. Herein, by utilizing functional reconstruction and comparative genome analysis, we deciphered the cooccurring mechanisms of four Candidatus Brocadia species that were spontaneously enriched in a full-scale swine wastewater treatment system. Phylogenetic analysis indicated that species SW172 and SW745 were closely related to Ca. Brocadia caroliniensis and Ca. Brocadia sapporoensis, respectively, whereas the dominant species SW510 and SW773, with a total average abundance of 34.1%, were classified as novel species of the genus Ca. Brocadia. Functional reconstruction revealed that the novel species SW510 can encode both cytochrome cd1-type nitrite reductase and hydroxylamine oxidase for nitrite reduction. In contrast, the detected respiratory pentaheme cytochrome c nitrite reductase and acetate kinase genes suggested that SW773 likely reduced nitrite to ammonium with acetate as a carbon source. Intriguingly, the presence of genes encoding urease and cyanase indicated that both novel species can use diverse organic nitrogen compounds in addition to ammonia and nitrite as substrates. Taken together, the recovery and comparative analysis of these anammox genomes expand our understanding of the functional differentiation and cooccurrence of the genus Ca. Brocadia in wastewater treatment systems.  相似文献   

5.
● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified. ● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L. ● Changing the substrate to ethanol did not notably increase the caproate production. ● Four genera, including Bifidobacterium , were revealed as caproate producers. ● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis. Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.  相似文献   

6.
● Lipid can promote PA production on a target from food waste. ● PA productivity reached 6.23 g/(L∙d) from co-fermentation of lipid and food waste. ● Lipid promoted the hydrolysis and utilization of protein in food waste. Prevotella , Veillonella and norank _f _Propioni bacteriaceae were enriched. ● Main pathway of PA production was the succinate pathway. Food waste (FW) is a promising renewable low-cost biomass substrate for enhancing the economic feasibility of fermentative propionate production. Although lipids, a common component of food waste, can be used as a carbon source to enhance the production of volatile fatty acids (VFAs) during co-fermentation, few studies have evaluated the potential for directional propionate production from the co-fermentation of lipids and FW. In this study, co-fermentation experiments were conducted using different combinations of lipids and FW for VFA production. The contributions of lipids and FW to propionate production, hydrolysis of substrates, and microbial composition during co-fermentation were evaluated. The results revealed that lipids shifted the fermentation type of FW from butyric to propionic acid fermentation. Based on the estimated propionate production kinetic parameters, the maximum propionate productivity increased significantly with an increase in lipid content, reaching 6.23 g propionate/(L∙d) at a lipid content of 50%. Propionate-producing bacteria Prevotella, Veillonella, and norank_f_Propionibacteriaceae were enriched in the presence of lipids, and the succinate pathway was identified as a prominent fermentation route for propionate production. Moreover, the Kyoto Encyclopedia of Genes and Genomes functional annotation revealed that the expression of functional genes associated with amino acid metabolism was enhanced by the presence of lipids. Collectively, these findings will contribute to gaining a better understanding of targeted propionate production from FW.  相似文献   

7.
● Present a general concept called “salinity exchange”. ● Salts transferred from seawater to treated wastewater until completely switch. ● Process demonstrated using a laboratory-scale electrodialysis system. ● High-quality desalinated water obtained at ~1 mL/min consuming < 1 kWh/m 3 energy. Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ~1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.  相似文献   

8.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   

9.
● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system ● Anammox coupled FeS denitrification was responsible for NH4+/NO3 removal ● Sulfammox, Feammox and Anammox occurred for NH4+ removal Thiobacillus, Nitrospira , and Ca. Kuenenia were key functional microorganisms An autotrophic denitrifying bioreactor with iron sulfide (FeS) as the electron donor was operated to remove ammonium (NH4+) and nitrate (NO3) synergistically from wastewater for more than 298 d. The concentration of FeS greatly affected the removal of NH4+/NO3. Additionally, a low hydraulic retention time worsened the removal efficiency of NH4+/NO3. When the hydraulic retention time was 12 h, the optimal removal was achieved with NH4+ and NO3 removal percentages both above 88%, and the corresponding nitrogen removal loading rates of NH4+ and NO3 were 49.1 and 44.0 mg/(L·d), respectively. The removal of NH4+ mainly occurred in the bottom section of the bioreactor through sulfate/ferric reducing anaerobic ammonium oxidation (Sulfammox/Feammox), nitrification, and anaerobic ammonium oxidation (Anammox) by functional microbes such as Nitrospira, Nitrosomonas, and Candidatus Kuenenia. Meanwhile, NO3 was mainly removed in the middle and upper sections of the bioreactor through autotrophic denitrification by Ferritrophicum, Thiobacillus, Rhodanobacter, and Pseudomonas, which possessed complete denitrification-related genes with high relative abundances.  相似文献   

10.
● Mechanical behavior of MBT waste affected by loading rate was investigated. ● Shear strength ratio of MBT waste increases with an increase in loading rate. ● Cohesion is inversely related to loading rate. ● Internal friction angles are positively related to loading rate. ● MBT waste from China shows smaller range of φ. Mechanical biological treatment (MBT) technology has attracted increasing attention because it can reduce the volume of waste produced. To deal with the current trend of increasing waste, MBT practices are being adopted to address waste generated in developing urban societies. In this study, a total of 20 specimens of consolidated undrained triaxial tests were conducted on waste obtained from the Hangzhou Tianziling landfill, China, to evaluate the effect of loading rate on the shear strength parameters of MBT waste. The MBT waste samples exhibited an evident strain-hardening behavior, and no peak was observed even when the axial strain exceeded 25%. Further, the shear strength increased with an increase in the loading rate; the effect of loading rate on shear strength under a low confining pressure was greater than that under a high confining pressure. Furthermore, the shear strength parameters of MBT waste were related to the loading rate. The relationship between the cohesion, internal friction angle, and logarithm of the loading rate could be fitted to a linear relationship, which was established in this study. Finally, the ranges of shear strength parameters cohesion c and effective cohesion c ´ were determined as 1.0–8.2 kPa and 2.1–14.9 kPa, respectively; the ranges of the internal friction angle φ and effective internal friction angle φ ´ were determined as 16.2°–29° and 19.8°–43.9°, respectively. These results could be used as a valuable reference for conducting stability analyses of MBT landfills.  相似文献   

11.
● Wastewater MPs exhibited resistomes and therefore health threats. ● High density of alkB gene indicates both HDPE and PET can be utilized by microbes. ● Plastics and waters actively selected and shaped the plastispheres over time. ● A broader phylogenetic spectrum of MHET-degrading microorganisms was annotated. The daily use of plastics presents a serious pollution issue due to their extremely slow degradation. Microplastics and the biofilm that grows on plastics (i.e., the plastisphere) are important subsets of plastic wastes. Many studies have been conducted to reveal the structures of the plastispheres, the driving factors for the formation of the plastisphere, and the ability of the plastispheres to degrade plastics in a variety of water bodies. However, the plastispheres related to wastewater are understudied. In this study, we used a microcosmic strategy to study the evolution of the plastispheres associated with microplastics (MPs) over time in wastewater. We found that plastic materials and water sources did not actively select and shape the plastispheres at an early stage, but the active selection for a unique niche of the plastisphere occurred after 14 d of growth. In addition, we confirmed that the alkB gene was densely present, and metagenomics showed some additional chemical reactions, which suggests that MPs are consumed by the microbes in the plastispheres. Additionally, metagenomics identified some metagenome-assembled genomes (MAGs) associated with high-density polyethylene (HDPE) and polyethylene terephthalate (PET). The identification of HDPE-associated MAGs and PET-associated MAGs further supports the notion that the selection for a unique niche of the plastisphere is driven by plastic materials and water sources (in this study, after 14 d of growth). Our discoveries bring new views on the behavior of the wastewater-associated plastisphere, especially how long it takes a wastewater plastisphere to form.  相似文献   

12.
● Salinity led to the elevation of NAR over 99.72%. ● Elevated salinity resulted in a small, complex, and more competitive network. ● Various AOB or denitrifiers responded differently to elevated salinity. ● Putative keystone taxa were dynamic and less abundant among various networks. Biological treatment processes are critical for sewage purification, wherein microbial interactions are tightly associated with treatment performance. Previous studies have focused on assessing how environmental factors (such as salinity) affect the diversity and composition of the microbial community but ignore the connections among microorganisms. Here, we described the microbial interactions in response to elevated salinity in an activated sludge system by performing an association network analysis. It was found that higher salinity resulted in low microbial diversity, and small, complex, more competitive overall networks, leading to poor performance of the treatment process. Subnetworks of major phyla (Proteobacteria, Bacteroidetes, and Chloroflexi) and functional bacteria (such as AOB, NOB and denitrifiers) differed substantially under elevated salinity process. Compared with subnetworks of Nitrosomonadaceae, Nitrosomonas (AOB) made a greater contribution to nitrification under higher salinity (especially 3%) in the activated sludge system. Denitrifiers established more proportion of cooperative relationships with other bacteria to resist 3% salinity stress. Furthermore, identified keystone species playing crucial roles in maintaining process stability were dynamics and less abundant under salinity disturbance. Knowledge gleaned from this study deepened our understanding of microbial interaction in response to elevated salinity in activated sludge systems.  相似文献   

13.
● A new adsorption-membrane separation strategy is used for phosphate removal. ● PVC/Zr-BT shows a selective adsorption ability to low-concentration phosphate. ● Low concentration of P below 0.05 mg/L was achieved in actual wastewater treatment. ● Algal biomass production served as a demonstration of phosphorus recycling. Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields.  相似文献   

14.
● EPS immobilizes U(VI) via adsorption, bioreduction and desorption. ● This work provides a framework to quantify the three immobilization processes. ● The non-equilibrium adsorption of U follows pseudo-second-order kinetics. ● The equilibrium adsorption of U followed Langmuir and Freundlich isotherms. Hexavalent uranium (U(VI)) can be immobilized by various microbes. The role of extracellular polymeric substances (EPS) in U(VI) immobilization has not been quantified. This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI) immobilization: adsorption, bioreduction and desorption. Loosely associated EPS was extracted from a pure bacterial strain, Klebsiella sp. J1, and then exposed to H2 and O2 (no bioreduction control) to immobilize U(VI) in batch experiments. U(VI) immobilization was faster when exposed to H2 than O2 and stabilized at 94% for H2 and 85% for O2, respectively. The non-equilibrium data from the H2 experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption (ka = 2.87 × 10−3 g EPS·(mg U)−1·min−1), first-order bioreduction (kb = 0.112 min−1) and first-order desorption (kd = 7.00 × 10−3 min−1) and fitted the experimental data with R2 of 0.999. While adsorption was dominant in the first minute of the experiments with H2, bioreduction was dominant from the second minute to the 50th min. After 50 min, adsorption was negligible, and bioreduction was balanced by desorption. This work also provides the first set of equilibrium data for U(VI) adsorption by EPS alone. The equilibrium experiments with O2 were well simulated by both the Langmuir isotherm and the Freundlich isotherm, suggesting multiple mechanisms involved in the interactions between U(VI) and EPS. The thermodynamic study indicated that the adsorption of U(VI) onto EPS was endothermic, spontaneous and favorable at higher temperatures.  相似文献   

15.
● pz-UiO-66 was synthesized facilely by a solvothermal method. ● Efficient capture of copper from highly acidic solution was achieved by pz-UiO-66. ● pz-UiO-66 exhibited excellent selectivity and capacity for copper capture. ● Pyrazine-N in pz-UiO-66 was shown to be the dominant adsorption site. The selective capture of copper from strongly acidic solutions is of vital importance from the perspective of sustainable development and environmental protection. Metal organic frameworks (MOFs) have attracted the interest of many scholars for adsorption due to their fascinating physicochemical characteristics, including adjustable structure, strong stability and porosity. Herein, pz-UiO-66 containing a pyrazine structure is successfully synthesized for the efficient separation of copper from strongly acidic conditions. Selective copper removal at low pH values is accomplished by using this material that is not available in previously reported metal–organic frameworks. Furthermore, the material exhibits excellent adsorption capacity, with a theoretical maximum copper uptake of 247 mg/g. As proven by XPS and FT-IR analysis, the coordination of pyrazine nitrogen atoms with copper ions is the dominant adsorption mechanism of copper by pz-UiO-66. This work provides an opportunity for efficient and selective copper removal under strongly acidic conditions, and promises extensive application prospects for the removal of copper in the treatment for acid metallurgical wastewater.  相似文献   

16.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

17.
● Fundamentals of membrane fouling are comprehensively reviewed. ● Contribution of thermodynamics on revealing membrane fouling mechanism is summarized. ● Quantitative approaches toward thermodynamic fouling mechanisms are deeply analyzed. ● Inspirations of thermodynamics for membrane fouling mitigation are briefly discussed. ● Research prospects on thermodynamics and membrane fouling are forecasted. Membrane technology is widely regarded as one of the most promising technologies for wastewater treatment and reclamation in the 21st century. However, membrane fouling significantly limits its applicability and productivity. In recent decades, research on the membrane fouling has been one of the hottest spots in the field of membrane technology. In particular, recent advances in thermodynamics have substantially widened people’s perspectives on the intrinsic mechanisms of membrane fouling. Formulation of fouling mitigation strategies and fabrication of anti-fouling membranes have both benefited substantially from those studies. In the present review, a summary of the recent results on the thermodynamic mechanisms associated with the critical adhesion and filtration processes during membrane fouling is provided. Firstly, the importance of thermodynamics in membrane fouling is comprehensively assessed. Secondly, the quantitative methods and general factors involved in thermodynamic fouling mechanisms are critically reviewed. Based on the aforementioned information, a brief discussion is presented on the potential applications of thermodynamic fouling mechanisms for membrane fouling control. Finally, prospects for further research on thermodynamic mechanisms underlying membrane fouling are presented. Overall, the present review offers comprehensive and in-depth information on the thermodynamic mechanisms associated with complex fouling behaviors, which will further facilitate research and development in membrane technology.  相似文献   

18.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   

19.
● A systematic framework was developed to identify i-PPCPs for landfill leachate. ● The wide-scope target analysis offered a basis for comprehensive i-PPCP screening. ● Source-specificity and representativeness analysis helped to refine i-PPCPs. ● Erythromycin, gemfibrozil and albendazole were identified as i-PPCPs for leachate. Identifying potential sources of pharmaceuticals and personal care products (PPCPs) in the environment is critical for the effective control of PPCP contamination. Landfill leachate is an important source of PPCPs in water; however, it has barely been involved in source apportionment due to the lack of indicator-PPCPs (i-PPCPs) in landfill leachates. This study provides the first systematic framework for identifying i-PPCPs for landfill leachates based on the wide-scope target monitoring of PPCPs. The number of target PPCPs increased from < 20 in previous studies to 68 in the present study. Fifty-nine PPCPs were detected, with median concentrations in leachate samples ranging from below the method quantification limit (MQL) to 41 μg/L, and 19 of them were rarely reported previously. A total of 29 target compounds were determined to be PPCPs of high concern by principal component analysis according to multiple criteria, including occurrence, exposure potential, and ecological effect. Coupled with source-specificity and representativeness analysis, erythromycin, gemfibrozil, and albendazole showed a significant difference in their occurrence in leachate compared to other potential sources (untreated and treated municipal wastewater and livestock wastewater) and correlated with total PPCP concentrations; these were recommended as i-PPCPs for leachates. Indicator screening procedure can be used to develop a sophisticated source apportionment method to identify sources of PPCPs from adjacent landfills.  相似文献   

20.
● There was no significant difference in soil aggregates TP along altitude gradient. ● Overall, PAC dropped steadily as aggregate size increased. ● In soil aggregate sizes, TPi > TPo > R-P at 3009,3347 and 3654 m except 3980 m. ● Active NaHCO3-Pi was the main AP source. ● Proportion of small aggregate sizes was emphasized to increase AP storage. The distribution and availability of phosphorus (P) fractions in restored cut slope soil aggregates, along altitude gradients, were analyzed. Samples were collected at 3009, 3347, 3654 and 3980 m of altitude. We examined soil aggregates total phosphorus (TP), available phosphorus (AP) and phosphorus activation coefficient (PAC), and discovered that there was no significant difference in TP levels between all four altitudes samples (p > 0.05). However, there was a significant difference in AP at 3009, 3347 and 3980 m of altitude (p < 0.05). At the altitudes of 3009, 3347 and 3654 m, the AP accumulation in small size aggregates was more advantageous. Overall, PAC dropped steadily as soil aggregates sizes increased, as shown: PAC (3654 m) > PAC (3347 m) > PAC (3009 m) > PAC (3980 m). In all particle size soil aggregates, the distribution of the P fractions was as follows: total inorganic phosphorus (TPi) > total organic phosphorus (TPo) > residual phosphorus (R-P), at 3009, 3347 and 3654 m, but a different registry was observed at 3980 m of altitude: TPo > TPi > R-P. Through correlation and multiple stepwise regression analysis, it was concluded that active NaHCO3-Pi was the main AP source. It was also suggested that more attention should be given to the ratio of small particle size aggregates to increase soil AP storage. In order to improve the activation capacity and supply of soil P, along with promotion of the healthy development of soil ecosystem on slope land, it was suggest that inorganic P fertilizer and P activator could be added to soil at both low (3009 m) and high altitudes (3980 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号