首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution and population structure of the eurybathic gorgonian Corallium rubrum were studied off Cap de Creus (Costa Brava, Northwestern Mediterranean Sea). Red coral is endemic to the Mediterranean Sea and the adjacent NE Atlantic coast, where it has been over exploited for centuries. This study presents, the first quantitative data on the spatial distribution and structure of a population extending between 50 (common SCUBA limits) and 230 m depth, and compared it with shallow populations previously studied in the same area. Different remotely operated vehicles (ROV) and two methodological approaches were employed during four cruises between 2002 and 2006: 1-Extensive surveys: sea to coast transects in which red coral density and patch frequency were recorded; 2-Intensive surveys, in which parameters describing colony morphology were recorded. Most of the hard substrate between 50 and 85 m depth was inhabited by red coral colonies, showing a patch frequency of 8.3 ± 7.9 SD patches per 100 m-transect (total transect area: 34 m2), and within-patch colony densities of 16–376 colonies m−2 (mean of 43 ± 53 colonies m−2). Below 120 m depth red coral was less abundant, and rather than forming dense patches as in shallow water, isolated colonies were more common. The population structure differed between sites that are easily accessible to red coral fishermen, and remote ones (both at similar depth, 60–80 m), as colonies in easily accessible locations were smaller in height and diameter, and showed a less developed branching pattern. At shallower locations (10–50 m depth) the population structure was significantly different from those at deeper locations, due to the heavy harvesting pressure they are exposed to in the shallows. Twenty-five to forty-six percentage of the deeper colonies were taller than 6 cm, while only 7–16% of the shallow water colonies exceeded 6 cm colony height. Forty-six to seventy-nine percentage of the colonies in deeper waters were large enough to be legally harvested, while only 9–20% of the shallow water colonies met the 7 mm legal basal diameter to be collected. The branching pattern was also better developed in deeper colonies, as up to 16% of the colonies showed fourth order branches, compared to less than 1% of the shallow water colonies (of which 96% consisted of only one single branch). The results thus confirm that C. rubrum populations above 50 m depth are exposed to a higher harvesting intensity than deeper populations in the same area.  相似文献   

2.
Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 μmol photons m?2 s?1. Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.  相似文献   

3.
Effects of sheltering fish on growth of their host corals   总被引:1,自引:0,他引:1  
Stony corals are the foundation species of tropical reefs, and their structures can harbor a diverse range of mutualist taxa that can confer important benefits, including provision of nutrients. Prominent among the associates of branching coral in the genus Pocillopora are groups of zooplanktivorous damselfishes that take refuge in the coral to avoid their predators. In field and laboratory experiments, we explored the effects of colonies of resident damselfishes on growth of their host corals. Laboratory studies revealed a positive relationship between biomass of fish and output of ammonium. In the field, levels of ammonium were significantly elevated in the water surrounding the branches of Pocillopora occupied by colonies of damselfish, particularly in time periods following active feeding by the fish. Experimental manipulation of the presence of fish on host corals during a month-long field experiment revealed that corals hosting fish grew significantly more than those that lacked fish, and coral growth was positively correlated with the biomass of resident fish. The Pocillopora colonies in the field experiment varied in the degree of openness of their branching structure, and dye studies indicated that this affected their ability to retain waterborne nutrients. Together with biomass of resident fish, colony openness explained 76% of the variation in coral growth rate during the experiment. Corals can exhibit considerable morphological variability, and mutualistic fish respond to colony architecture during habitat selection, with some species preferring more open-branched forms. This makes it likely that corals may face tradeoffs in attracting resident fish and in retaining the nutrients they provide.  相似文献   

4.
The comparative morphology of the axial skeleton was studied in representatives of 5 reef-dwelling gorgonian families and 2 antipatharian genera by electron and light microscopy. Comparative axial histochemistry, amino acid composition and the physico-chemical character of the protein were also studied. Evidence obtained indicates that collagen is a widespread and prominent structural feature of the gorgonian axial skeleton. Aromatic crosslinkage (sclerotization) also appears to be of widespread, if not universal occurrence in these animals. Sclerotization is equally characteristic of the black coral skeletons studied, but this material does not contain collagen. Its unusual composition, structure, and reactivity is discussed.  相似文献   

5.
Although the fitness consequences of herbivory on terrestrial plants have been extensively studied, considerably less is known about how partial predation impacts the fitness of clonal marine organisms. The trophic role of Caribbean parrotfish on coral reefs is complex: while these fish are important herbivores, as corallivores (consumers of live coral tissue), they selectively graze specific species and colonies of reef-building corals. Though the benefits of parrotfish herbivory for reef resilience and conservation are well documented, the negative consequences of parrotfish grazing for coral reproductive fitness have not been previously determined. We examined recently grazed colonies of Montastraea annularis corals to determine whether grazing was positively associated with coral reproductive effort. We measured gonad number, egg number and size, and proportional reproductive allocation for grazed and intact coral colonies 2–5 days prior to their annual spawning time. We found that parrotfish selectively grazed coral polyps with high total reproductive effort (number of gonads), providing the first evidence that parrotfish selectively target specific tissue areas within a single coral colony. The removal of polyps with high reproductive effort has direct adverse affects on coral fitness, with additional indirect implications for colony growth and survival. We conclude that chronic grazing by parrotfishes has negative fitness consequences for reef-building corals, and by extension, reef ecosystems.  相似文献   

6.
Many facets of coral research require coral colony surface area estimates. This study developed a relationship between the two-dimensional (2D) projected area and the three-dimensional (3D) whole colony surface area for two commonly studied Indo-Pacific coral species: Pocillopora damicornis and Stylophora pistillata. The surface index function was used to measure the growth of colonies in situ around Heron reef on the southern Great Barrier Reef. The results show that while growth between the two species was not significantly different when measured in two dimensions, the 3D area showed significantly different growth rates with S. pistillata growing at almost double the rate of P. damicornis. The study demonstrates that it is possible to make reliable estimates of the 3D surface area of entire colonies of these complex branching coral species, using the plan view of the coral and a pre-determined surface index function. In addition, this study shows that the 3D surface area provides a more useful measure of colony growth than the traditional methods of either 2D area or longest dimension.  相似文献   

7.
Calcification rates in different fragments along branches of the hermatypic coral Stylophora pistillata were tested in the laboratory using a new technique, the optic glassfiber method. By this method, the tested colony remains constantly in dark conditions while a narrow beam of light, transferred through the optic fiber, illuminates a small distinct point of coral tissue (on a branch tip or base). The selected illuminated portion of the branch serves as the experimental fragment, while all the other parts of the same colony serve as the dark controls. The results indicate that significantly more calcium is incorporated in the tip fragments than in the bases, both in light and in dark conditions (4.1 to 13.2 times more). Illumination of the tips or the bases did not stimulate or enhance the calcification rates of these fragments. Thus, in all colonies tested, the calcification rates of the illuminated fragments were not significantly different from the average rates of other similar, non-illuminated fragments of the same colony. It is suggested that light does not directly enhance calcification in hermatypic corals, but rather, that light enhances O2 production, which consequently stimulates coral metabolism. Our preliminary results indicate that calcification rates recorded in aerated dark experiments are significantly higher than calcification rates of non-aerated dark controls.  相似文献   

8.
In a previous study it was demonstrated that a lectin controls cell-cell interaction in the gorgonian Eunicella cavolinii (Koch) as a negative modulator. Now we describe the procedure to purify this lectin to homogeneity; its molecular weight is 23 400. The homologous proteoglycans were identified as positive modulators of cell-cell (and/or cell substrate) interaction. The purified single proteoglycan aggregates were 1200±700 nm long and the distance between the attachment points of the proteoglycan subunits was about 45 nm. The glycosaminoglycan residues of the gorgonian proteoglycans were identified as hyaluronic acid (35.5%), heparan sulfate (47.9%) and dermatan sulfate (14.1%). Binding studies with immobilized homologous proteoglycan preparations revealed that gorgonian cells attach to this substratum presumably via its glycosaminoglycans. Quantitative determinations of these two modulators of cell-cell recognition in the three regions of individual colonies revealed concentration gradients these concentration differences reflect a lower cell motility in the polyp-bearing branches and a higher motility of the cells in the polyp-free stem and in the basis, is discussed.  相似文献   

9.
This study documents the effects of two consecutive disturbances on coral community structures in the Gulf of Oman (United Arab Emirates); Cyclone Gonu in June 2007 and the Cochlodinium polykrikoides harmful algal bloom (HAB) that persisted from August 2008 until May 2009. Coral cover, colony densities, size class frequency distributions, and geometric growth rates derived from size class transition probability matrices were used to assess the post-Gonu and post-HAB recovery trajectories at four sites. The net effects of these disturbances were fourfold: (i) storm damage caused >50% losses of live branching and tabular coral cover by fragmentation and dislodgment of pocilloporid and acroporid colonies; (ii) Pocillopora damicornis colonies that survived the cyclone experienced mass mortality during the first 3?months of the HAB, resulting in localized extirpation of this species; (iii) variable Acropora mortality during the HAB indicated individual colony, rather than taxa-wide, susceptibility; and (iv) massive colony coral taxa were resistant to both disturbances.  相似文献   

10.
Vermicompost is a very important biofertilizer produced through the artificial cultivation of worms i.e. Vermiculture. Vermicompost is enriched with all beneficial soil bacteria and also contain many of the essential plant nutrients like N, P, K and micronutrients. It increases soil aeration, texture and jilt. In this work, study is being carried out to find out the effect of different fertilizers such as DAF, FYM and Vermicompost on various morphological parameters and on the in vitro growth of bacterial colonies and its diversity in relation to two important leguminous plants such as Pisum sp. and Cicer sp. Results showed that plant grown in Vermicompost pretreated soil exhibited maximum increase in all morphological parameters such as root length, shoot length, number of root branches, number of stem branches, number of leaves, number of flowers, number of pods and number of root nodules in four months sampling in comparison to untreated, FYM treated and DAP treated soils. Further in Vermicompost pretreated soil, number of N2 fixing bacterial colony was maximum and showed highest diversity indices (1.6 and 0.99 and 2.0 and 0.99 for Cicer sp. and Pisum sp. respectively) than FYM, DAP and untreated control. Thus not only does the Vermicompost stimulate plant growth but also it increases the N2 fixing bacterial population in soil and also its diversity.  相似文献   

11.
Red coral (Corallium rubrum, L. 1758) is an over-exploited Mediterranean gorgonian. The gonadal development cycle of this gorgonian is examined at the Costa Brava (NW Mediterranean) taking into account for the first time colony size, depth and spatial horizontal variability. This study compares the gonad development and fertility in two colony size classes (colonies <6-cm height, and >10-cm height, both at 40–45-m depth), and two populations at different depths (16–18-m depth, and 40–45-m depth, both consisting of <6-cm high colonies) in a 15-month period. The fertility of seven size classes (<2 cm to >12 cm high colonies, in 2 cm intervals) was examined in the deep population, where large colonies were present. Furthermore, reproductive output was compared in 6 populations (distributed along more than 70-km coastline) one month before spawning (June). Red coral was found to be dioecious and gonochoric with a sex ratio of 1:1, which differs from other NW Mediterranean populations. On the other hand, fertility of different size classes indicates that small colonies of 2-cm height already produce gonads, which is in line with previous studies. Female and male polyp fertility and sperm sac size increase significantly with colony size [sperm sac diameter: 476±144 μm (mean±SD) and 305±150 μm in the >10-cm and <6-cm height colonies, respectively), whereas no significant effect on oocyte diameter was found (oocyte diameter: 373.7±18.7 μm). Depth staggered spawning, that is, an earlier release of gonads in the shallow populations, was observed in summer 2003, coinciding with the highest temperature gradient between shallow and deep water during the study period. Colonies of <6-cm height were significantly less fertile than colonies >12 cm, thus the recommendation of this study is that a minimum height should be incorporated into fishing regulations. The six studied populations at the Costa Brava showed a comparable reproductive potential, which demonstrates little variability within the homogenous population structure and range of size classes (due to overharvesting) found at the Costa Brava. The study of reproductive output is an important tool for ecosystem management, and this work recommends basing specific exploitation laws for distinctive populations on colony size, which is found to have a larger effect on reproductive potential than mesoscale variability. An erratum to this article can be found at  相似文献   

12.
Several scleractinian coral species with different growth forms and life history strategies were studied in terms of colony growth (expressed as projected linear increment) and survivorship over a range of distances and environmental conditions in the Philippines. The experimental design consisted of 1 m2 plots grouped within a reef site, to several sites within reef systems separated by a distance of about 340 km. There were distinct differences among species, with submassive and massive forms displaying slower growth but better survival, confirming results of other studies. They probably play the role of framework builders of the reef. In contrast, the delicate branching and foliose species had higher growth rates but poor survivorship. This observation, plus their ease of fragmentation, suggests they act more as fillers of the reef matrix. There was high variability in colony increment of a species among the square meter plots, but not among sites within a reef system. Thus, more regular pattern could be observed at this level. In contrast to growth, survivorship differed significantly among sites, being lowest in the site which harbored the greatest amount of dead coral. Growth and survival, however, are not sufficient performance measures to evaluate the success of coral transplantation. Reproduction and subsequent recruitment must also be taken into account. It is recommended that coral transplant and restoration studies consider the broad environmental context of restoration and seek to develop assembly rules that will allow practitioners to match coral types and sequence of interventions to each unique context.  相似文献   

13.
This study examines the abundances of three morphological categories of juvenile corals (massive, branching and encrusting) on two different types of natural substratum, dead massive and dead branching corals. The overall results show that the morphological characteristics of dead coral substratum have a significant influence on the coral recruitment patterns with respect to the morphology of the recruits: juvenile corals of massive and branching types were more abundant on substrates of corresponding morphology. The results obtained from this study suggest that dead coral might attract coral larvae that are morphologically similar. On the other hand, it may be the result of post-settlement mortality. Whatever the mechanism shaping the patterns is, it seems that the physical morphology of the dead coral substrate has a significant influence on the coral recruit assemblage. Hence, we suggest that substrate morphology can be an important qualitative factor for coral settlement and a possible determinant of community structure.  相似文献   

14.
Although the rapid recovery of fishes after establishment of a marine reserve is well known, much less is known about the response of long-lived, sessile, benthic organisms to establishment of such reserves. Since antiquity, Mediterranean red coral (Corallium rubrum) has been harvested intensively for use in jewelry, and its distribution is currently smaller than its historical size throughout the Mediterranean Sea. To assess whether establishment of marine reserves is associated with a change in the size and number of red coral colonies that historically were not harvested sustainably, we analyzed temporal changes in mean colony diameter and density from 1992 to 2005 within red coral populations at different study sites in the Medes Islands Marine Reserve (established in 1992) and in adjacent unprotected areas. Moreover, we compared colony size in the Medes Islands Marine Reserve, where recreational diving is allowed and poaching has been observed after reserve establishment, with colony size in three other marine protected areas (Banyuls, Carry-le-Rouet, and Scandola) with the enforced prohibition of fishing and diving. At the end of the study, the size of red coral colonies at all sampling sites in the Medes Islands was significantly smaller than predicted by growth models and smaller than those in marine protected areas without fishing and diving. The annual number of recreational dives and the percent change in the basal diameter of red coral colonies were negatively correlated, which suggests that abrasion by divers may increase the mortality rates of the largest red coral colonies within this reserve . Our study is the first quantitative assessment of a poaching event, which was detected during our monitoring in 2002, inside the marine reserve. Poaching was associated with a loss of approximately 60% of the biomass of red coral colonies.  相似文献   

15.
J. Stimson 《Marine Biology》1990,106(2):211-218
A mutualism exists between the xanthid crabs of the genusTrapezia and their host corals,Pocillopora damicornis. It has previously been established that these obligate coral residents benefit the coral hosts by defending them against echinoderm predators and by increasing the survival of polyps located deep between the coral branches. In turn, the corals apparently benefit the crabs by producing lipid-filled structures on which the trapezid crabs feed; these fat bodies may contain some of the lipid which in previous studies of coral metabolism has been termed excess. It was determined by experiments conducted at the Hawaii Institute of Marine Biology that the presence of crabs in colonies ofP. damicornis stimulates the polyps to produce the lipid-filled fat bodies; removal of crabs causes corals to cease producing fat bodies. A structure very similar to the fat bodies ofP. damicornis has been reported inAcropora durvillei. Both of these coral genera ordinarily possess xanthid-crab mutualists. This association between branching corals and crustaceans may have evolved because corals of these genera provide shelter among their branches and because these shallow-water corals are evidently capable of releasing lipid which is excess to the corals' metabolic needs, but which can be utilized by the crabs.  相似文献   

16.
Colonial photosynthetic marine organisms often exhibit morphological phenotypic plasticity. Where such plasticity leads to an improved balance between rates of photosynthesis and maintenance costs, it is likely to have adaptive significance. To explore whether such phenotypic plasticity leads to more favourable within-colony irradiance for reef-building branching corals, this relationship was investigated for two coral species Acropora humilis and Stylophora pistillata, along a depth gradient representing light habitats ranging from 500 to 25 μmol photons m−2 s−1, during 2006 at Heron Island, Great Barrier Reef (23.44°S, 151.91°E). In the present study changes in flow-modulated mass transfer co-varied with light as a function of depth. In low-light (deep) habitats, branch spacing (colony openness) in A. humilis and S. pistillata was 40–50% greater than for conspecifics in high-light environments. Also, branches of A. humilis in deep water were 40–60% shorter than in shallow water. Phenotypic changes in these two variables lead to steeper within-colony light attenuation resulting in 38% higher mean internal irradiance (at the tissue surface) in deep colonies compared to shallow colonies. The pattern of branch spacing was similar for S. pistillata, but this species displayed an alternate strategy with respect to branch length: shade adapted deep and cave colonies developed longer and thinner branches, allowing access to higher mass transfer and irradiance. Corals in cave habitats allowed 20% more irradiance compared to colonies found in the deep, and had a 47% greater proportion of irradiance compared to colonies in the shallow high-light environment. Such phenotypic regulation of internal light levels on branch surfaces partly explains the broad light niches of many branching coral species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Size influences the photosynthesis-irradiance (P-I) relationship in colonies of the branched reef-coral Pocillopora damicornis and in intact plants of the branched redmacroalga Acanthophora spicifera. The light saturation constant is proportional to size. Maximum net rate of oxygen production (net photosynthesis) per colony and nocturnal dark oxygen-uptake rate per colony (respiration) increase with increasing size, but the latter increases at a much lower rate. Therefore, the photosynthesis to respiration ratio increases with increasing canopy size. Large increases in chlorophyll per unit reef area also accompany increase in size. The initial slope (alpha) of the chlorophyll-specific P-I curve and assimilation number are inversely related to size. Integrated daytime oxygen production increases with size more rapidly than nighttime oxygen consumption. Consequently, net primary production of an entire colony or plant (or rate per unit area of reef) increases with increasing size of the canopy. Production efficiency also increases with size. The coral is rigid, symmetrical and highly organized. Chlorophyll distribution is more stratified in comparison to the macroalga. The coral shows higher photosynthetic efficiency, as would be expected according to the stratified production model of Odum et al. (1958). This research was conducted on specimens from Kaneohe Bay, Oahu, Hawaii, USA in 1981.  相似文献   

18.
Social interactions are critical to the organization of worker activities in insect colonies and their consequent ecological success. The structure of this interaction network is therefore crucial to our understanding of colony organization and functioning. In this paper, I study the properties of the interaction network in the colonies of the social wasp Ropalidia marginata. I find that the network is characterized by a uniform connectivity among individuals with increasing heterogeneity as colonies become larger. Important network parameters are found to be correlated with colony size and I investigate how this is reflected in the organization of work in colonies of different sizes. Finally, I test the resilience of these interaction networks by experimental removal of individuals from the colony and discuss the structural properties of the network that are related to resilience in a social network. This contribution is part of the special issue “Social Networks: new perspectives” (Guest Editors: J. Krause, D. Lusseau, and R. James).  相似文献   

19.
Dynamics of a coral reef community at Tiao-Shi Reef, southern Taiwan were studied using permanent transects to examine coral recovery and successive cascades to collapse stage resulting from chronic anthropogenic impacts and typhoons. Three distinct zones were recognized within a relatively small study area (250 m across) formerly dominated by large stands of branching Acropora corals. The first zone still retains the dominance of branching Acropora corals, although they show a significant decreasing tendency. The second zone exhibits recovery with a significant increase in branching Montipora stellata, which is recruited and grows faster than branching Acropora corals. The third zone is occupied by anemone, Condylactis sp., and demonstrates a stable phase of coral deterioration without recovery. Such differences in coral reef community dynamics within a small spatial scale illustrate mosaic dynamics which have resulted from degradation of the water quality, patchy mortality of large branching Acropora thickets caused by typhoons, the rapid asexual fragmentation and growth of M. stellata making it a successful colonizer, and occupation by anemone, Condylactis sp., together with unstable remnants of dead Acropora rubbles have not allowed coral recruits to survive.  相似文献   

20.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号