首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located ~18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   

2.
Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NO(x), NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.  相似文献   

3.
The widely used source apportionment model, positive matrix factorization (PMF2), has been applied to various air pollution data. Recently, U.S. Environmental Protection Agency (EPA) developed EPA positive matrix factorization (PMF), a version of PMF that will be freely distributed by EPA. The objectives of this study were to conduct source apportionment studies for particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)) speciation data using PMF2 and EPA PMF (version 1.1) and to compare identified sources between the two models. In the present study, ambient PM(2.5) compositional datasets of 24-hr integrated samples collected at EPA Speciation Trends Network monitoring sites in Chicago, IL, and Portland, OR, were analyzed. Both PMF2 and EPA PMF extracted eight sources for the Chicago data and 10 sources for the Portland data. The model-resolved source profiles were similar between two models for both datasets. However, in several sources, the average contributions did not agree well and the time series contributions were not highly correlated. The differences between PMF2 and EPA PMF solutions were caused by the different least-square algorithm and the different nonnegativity constraints. Most of the average source contributions resolved by both models were within 5-95% uncertainty provided by EPA PMF, indicating that the sources resolved by both models were reproducible.  相似文献   

4.
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.  相似文献   

5.
In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore inertial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM2.5 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 72-77%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.  相似文献   

6.
As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.  相似文献   

7.
ABSTRACT

In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore iner-tial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM25 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 7277%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.  相似文献   

8.
9.
Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO2) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO2 emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020.  相似文献   

10.
Abstract

Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were sec ondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.  相似文献   

11.
Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard-U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 microg/m3, with an average of 9.3 microg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively.  相似文献   

12.
Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90 percent or more (95 percent or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur.  相似文献   

13.
Three new methods applicable to the determination of hazardous metal concentrations in stationary source emissions were developed and evaluated for use in U.S. Environmental Protection Agency (EPA) compliance applications. Two of the three independent methods, a continuous emissions monitor-based method (Xact) and an X-ray-based filter method (XFM), are used to measure metal emissions. The third method involves a quantitative aerosol generator (QAG), which produces a reference aerosol used to evaluate the measurement methods. A modification of EPA Method 301 was used to validate the three methods for As, Cd, Cr, Pb, and Hg, representing three hazardous waste combustor Maximum Achievable Control Technology (MACT) metal categories (low volatile, semivolatile, and volatile). The modified procedure tested the methods using more stringent criteria than EPA Method 301; these criteria included accuracy, precision, and linearity. The aerosol generation method was evaluated in the laboratory by comparing actual with theoretical aerosol concentrations. The measurement methods were evaluated at a hazardous waste combustor (HWC) by comparing measured with reference aerosol concentrations. The QAG, Xact, and XFM met the modified Method 301 validation criteria. All three of the methods demonstrated precisions and accuracies on the order of 5%. In addition, correlation coefficients for each method were on the order of 0.99, confirming the methods' linear response and high precision over a wide range of concentrations. The measurement methods should be applicable to emissions from a wide range of sources, and the reference aerosol generator should be applicable to additional analytes. EPA recently approved an alternative monitoring petition for an HWC at Eli Lilly's Tippecanoe site in Lafayette, IN, in which the Xact is used for demonstrating compliance with the HWC MACT metal emissions (low volatile, semivolatile, and volatile). The QAG reference aerosol generator was approved as a method for providing a quantitative reference aerosol, which is required for certification and continuing quality assurance of the Xact.  相似文献   

14.
Abstract

Aerosol optical depth (AOD) acquired from satellite measurements demonstrates good correlation with particulate matter with diameters less than 2.5 µm (PM2.5) in some regions of the United States and has been used for monitoring and nowcasting air quality over the United States. This work investigates the relation between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and PM2.5 over the 10 U.S. Environmental Protection Agency (EPA)-defined geographic regions in the United States on the basis of a 2-yr (2005–2006) match-up dataset of MODIS AOD and hourly PM2.5 measurements. The AOD retrievals demonstrate a geographical and seasonal variation in their relation with PM2.5. Good correlations are mostly observed over the eastern United States in summer and fall. The southeastern United States has the highest correlation coefficients at more than 0.6. The southwestern United States has the lowest correlation coefficient of approximately 0.2. The seasonal regression relations derived for each region are used to estimate the PM2.5 from AOD retrievals, and it is shown that the estimation using this method is more accurate than that using a fixed ratio between PM2.5 and AOD. Two versions of AOD from Terra (v4.0.1 and v5.2.6) are also compared in terms of the inversion methods and screening algorithms. The v5.2.6 AOD retrievals demonstrate better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in the cloud-screening algorithm.  相似文献   

15.
ABSTRACT

From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the “clean” Wedding sampler consistently measured the same concentration as the “dirty” Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 um under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

16.
From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the "clean" Wedding sampler consistently measured the same concentration as the "dirty" Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 microns under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

17.
We have studied the possible association of daily mortality with ambient pollutant concentrations (PM10, CO, O3, SO2, NO2, and fine [PM2.5] and coarse PM) and weather variables (temperature and dew point) in the Pittsburgh, PA, area for two age groups--less than 75, and 75 and over--for the 3-year period of 1989-1991. Correlation functions among pollutant concentrations show important seasonal dependence, and this fact necessitates the use of seasonal models to better identify the link between ambient pollutant concentrations and daily mortality. An analysis of the seasonal model results for the younger-age group reveals significant multicollinearity problems among the highly correlated concentrations of PM10, CO, and NO2 (and O3 in spring and summer), and calls into question the rather consistent results of the single- and multi-pollutant non-seasonal models that show a significant positive association between PM10 and daily mortality. For the older-age group, dew point consistently shows a significant association with daily mortality in all models. Collinearity problems appear in the multi-pollutant seasonal and non-seasonal models such that a significant, positive PM10 coefficient is accompanied by a significant, negative coefficient of another ambient pollutant, and the identity of this other pollutant changes with season. The PM2.5 data set is half that of PM10. Identical-model runs for both data sets reveal instability in the pollutant coefficients, especially for the younger age group. The concern for the instability of the pollutant coefficients due to a small signal-to-noise ratio makes it impossible to ascertain credibly the relative associations of the fine- and coarse-particle modes with daily mortality. In this connection, we call for caution in the interpretation of model results for causal inference when the models use fully or partially estimated PM values to fill large data gaps.  相似文献   

18.
Numerous studies have reported a positive association between ambient fine particles and daily mortality, but little is known about the particle properties or environmental factors that may contribute to these effects. This study assessed potential modification of radon on PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm)-associated daily mortality in 108 U.S. cities using a two-stage statistical approach. First, city- and season-specific PM2.5 mortality risks were estimated using over-dispersed Poisson regression models. These PM2.5 effect estimates were then regressed against mean city-level residential radon concentrations to estimate overall PM2.5 effects and potential modification by radon. Radon exposure estimates based on measured short-term basement concentrations and modeled long-term living-area concentrations were both assessed. Exposure to PM2.5 was associated with total, cardiovascular, and respiratory mortality in both the spring and the fall. In addition, higher mean city-level radon concentrations increased PM2.5-associated mortality in the spring and fall. For example, a 10 µg/m3 increase in PM2.5 in the spring at the 10th percentile of city-averaged short-term radon concentrations (21.1 Bq/m3) was associated with a 1.92% increase in total mortality (95% CI: 1.29, 2.55), whereas the same PM2.5 exposure at the 90th radon percentile (234.2 Bq/m3) was associated with a 3.73% increase in total mortality (95% CI: 2.87, 4.59). Results were robust to adjustment for spatial confounders, including average planetary boundary height, population age, percent poverty and tobacco use. While additional research is necessary, this study suggests that radon enhances PM2.5 mortality. This is of significant regulatory importance, as effective regulation should consider the increased risk for particle mortality in cities with higher radon levels.

Implications: In this large national study, city-averaged indoor radon concentration was a significant effect modifier of PM2.5-associated total, cardiovascular, and respiratory mortality risk in the spring and fall. These results suggest that radon may enhance PM2.5-associated mortality. In addition, local radon concentrations partially explain the significant variability in PM2.5 effect estimates across U.S. cities, noted in this and previous studies. Although the concept of PM as a vector for radon progeny is feasible, additional research is needed on the noncancer health effects of radon and its potential interaction with PM. Future air quality regulations may need to consider the increased risk for particle mortality in cities with higher radon levels.  相似文献   


19.
A Fourier-transform infrared (FT-i.r.) system operable at pathlengths up to 2 km has been constructed for the detection and measurement of trace contaminants in the ambient atmosphere and in controlled smog formation studies. The long optical path is achieved by the use of an eight-mirror multiple reflection cell with a 22.5-m base path. The design, construction and use of this novel foldedpath optical system are described in detail. In preliminary ambient air measurements at Riverside, California, during the period August–October, 1976, ppb concentrations of formaldehyde, nitric acid, formic acid and ammonia (in addition to O3 and PAN) were measured in ambient air.  相似文献   

20.
Persistent organic pollutants including organochlorine pesticides, PCBs, and PCDDs/DFs were determined in the blubber of Caspian seals, which died during an outbreak of canine distemper virus in 2000 and 2001. DDTs were the predominant contaminants that ranged from 3.1 to 560 microg/g lipid. A negative correlation was observed between concentration of contaminants and blubber thickness. During spring, as the blubber layer becomes thin after breeding and moulting, seals may face higher risk due to the increased concentration of organochlorines in their bodies. TEQs in the blubber of Caspian seals (10-340 pg TEQ/g) were lower than those in seals from other locations, suggesting that toxic effects of these contaminants are a deal less in the present population and they are unlikely to be linked to mass mortality. The levels of PCBs and pesticides in Caspian seals, however, comparable to those in other aquatic mammals that have suffered from epizootics, might pose a risk of immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号