首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
长江口潮滩表层沉积物中多环芳烃分布特征   总被引:55,自引:1,他引:54       下载免费PDF全文
长江口滨岸潮滩14个表层沉积物中多环芳烃(PAHs)分析表明,PAHs总量分布范围在0.263~6.372mg/kg.多环芳烃含量随取样位置发生明显的变化,主要特征是在近排污口处含量最大,而远离排污口含量趋于降低.依据荧蒽/芘之比以及2+3环与4环以上PAHs化合物分布特点,表明长江口近岸潮滩沉积物中PAHs主要来自石油类污染物的输入.通过与国内外河口潮滩沉积物中PAHs含量的对比,研究区处于低-中等水平,但已有个别PAHs化合物(如蒽、芴)超过基于生物毒性试验的沉积物质量标准,对潮滩生态将构成一定的潜在危害.  相似文献   

2.
2016年7月于北江清远段采集21个水和表层沉积物样品,采用气相色谱质谱(GC-MS)法测定了样品中的PAHs(多环芳烃)含量,分析了北江水环境中PAHs的污染水平,并对其生态风险进行了评价.结果表明,水中ρ(∑PAHs)介于0.4~110.2 ng/L,表层沉积物中w(∑PAHs)(以干质量计,下同)在54.4~819.8 ng/g之间,平均值分别为41.7 ng/L和424.9 ng/g.与国内水体PAHs污染状况相比,北江清远段水中PAHs污染状况处于中低水平,而表层沉积物污染状况处于中等水平.运用特征比值法对PAHs来源进行分析表明,PAHs主要来源为石油泄漏、化石燃料燃烧.采用商值法对水中PAHs进行生态风险评价,∑PAHs和个别单体的最低风险浓度风险商值大于1.0而最高风险浓度风险商值小于1.0,处于中等污染水平;采用效应区间低、中值法对表层沉积物PAHs进行生态风险评价,仅个别点位表层沉积物中苊烯、蒽和二苯并[a,h]蒽超出生态效应低值,对生态环境潜在负面效应较小.研究显示,北江水和沉积物中PAHs潜在风险处于较低水平.   相似文献   

3.
长江口滨岸潮滩沉积物中磷的环境地球化学特征   总被引:21,自引:3,他引:21  
研究了长江口滨岸潮滩表层沉积物中磷的分布、形态等环境地球化学特征。结果表明该地区表层沉积物中磷的含量水平在18.0-31.4μmol/g之间,最大值出现在浦东白龙港污水排放口附近,长江口滨岸潮滩沉积物中磷的分布呈现明显的空间和季节性变化规律,这主要与潮滩不同地段磷的来源、沉积物质地的差异,以及水动力、环境介质条件和生物作用的时空变化密切相关。此外,沉积物中磷的形态分级研究表明大部分沉积磷以无机磷形式存在,其中无机磷又以钙结合磷为主;有机磷比例较少。其次,潮滩沉积物表层上覆水中可溶磷的浓度一般都大于沉积物间隙水,沉积物-水界面中磷主要以累积作用过程为主。  相似文献   

4.
2014年10月底和2015年7月底对青岛大沽河口潮间带表层沉积物进行了2个航次的调查,测定了15个枯季表层沉积物样品和45个洪季表层沉积物样品中砷和汞的含量,并进行了污染评价分析。结果表明,枯季表层沉积物中砷含量基本都超过第一类海洋沉积物质量标准,符合第一类海洋沉积物质量标准,而洪季表层沉积物中砷含量符合第一类海洋沉积物质量标准。枯季和洪季表层沉积物中的汞含量均符合第一类海洋沉积物质量标准。采用地累积指数法(I_(geo))和潜在生态危机指数法(E_r~i)对该区域表层沉积物中的砷和汞进行污染评价。结果表明,枯季表层沉积物中砷属于轻度~偏中度污染,汞属于无污染~轻度污染;洪季沉积物中砷基本无污染,汞属于无污染~偏中度污染。枯季表层沉积物中砷的潜在生态危害程度为轻微~中等水平,汞的潜在生态危害程度为轻微~较强水平;洪季表层沉积物中砷的潜在生态危害程度为轻微水平,汞的潜在生态危害程度为轻微~较强水平。  相似文献   

5.
滦河流域多环芳烃的污染特征、风险评价与来源辨析   总被引:14,自引:2,他引:12  
在滦河上、中、下游和河口地区布设了15个采样点,对滦河流域的河水和表层沉积物中多环芳烃(PAHs)进行了分析.结果表明,水中PAHs总量为9.8~310ng.L-1,表层沉积物中PAHs总量最高达478ng.g-1.城市地区河段中PAHs的浓度高于农村河段中PAHs的浓度,河口地区相对中游地区污染较轻.就组成特征而言,水中PAHs以3环(40.9%)、4环(56.2%)为主,表层沉积物中PAHs以3环(30.0%)、4环(39.3%)、5环(15.8%)为主.总的来讲,3环、4环PAHs是滦河流域PAHs最主要的成分.地表水健康风险评价结果显示,韩家营、瀑河口两个采样点苯并[a]芘(BaP)毒性当量值(EBaP)分别为11.8、11.4ng.L-1,超出中国国家环境保护部(CEPA)制定的EBaP=2.8ng.L-1的国家标准,存在不利的健康风险.表层沉积物生态风险评价结果显示,韩家营、上板城、乌龙矶地区的PAHs可能存在着对生物的潜在危害,剩余研究区域不存在生态风险.滦河水和表层沉积物PAHs主要表现为以草、木柴和煤燃烧来源为主的特征,部分样点存在燃油与木柴、煤燃烧的混合来源特征.瀑河口、大黑汀受石油源污染影响明显.  相似文献   

6.
长江口近岸水体悬浮颗粒物多环芳烃分布与来源辨析   总被引:4,自引:0,他引:4  
对长江口近岸水体悬浮颗粒物中的多环芳烃(PAHs)进行了定量分析.结果表明,悬浮颗粒物PAHs总量为2 278.79~14 293.98 ng/g,排污口附近浓度最高,远离排污口浓度降低;就其组成特征而言,以4~6环PAHs为主,2~3环PAHs相对较少.聚类分析表明.除了城市排污外,河口水动力条件也对近岸PAHs分布特征产生一定影响.此外,悬浮颗粒物浓度、有机碳、炭黑含量也是控制近岸PAHs分布的重要影响因素.主成分分析和PAHs特征参数分析发现,近岸水环境中PAHs的主要来源为矿物燃料的不完全燃烧,此外还有少量石油输入.生态风险评价结果显示,大部分PAH化合物均超过ER-L值和ISQV-L值,表明长江口近岸水体悬浮颗粒物中的PAHs已具有不利的生物影响效应.  相似文献   

7.
大冶湖表层沉积物-水中多环芳烃的分布、来源及风险评价   总被引:15,自引:13,他引:2  
于2015年8月采集大冶湖表层沉积物8个及上覆水样8个,使用GC-MS分析16种EPA优控PAHs.结果表明在表层沉积物及水体中ΣPAHs范围分别为:35.94~2 032.73 ng·g-1和27.94~242.95 ng·L~(-1),平均值分别为940.61 ng·g-1和107.77 ng·L~(-1);表层沉积物中PAHs分布呈现湖中高于岸边趋势,水体则呈大致相反趋势,表层沉积物中以4~5环高环化合物为主要组分,在水体中主要以2环以及4环和5环PAHs为主,与国内外其他湖泊相比处于中度污染水平;来源解析表明大冶湖表层沉积物及水体中多环芳烃主要来自于高温燃烧源,沉积物中PAHs高环分子都占据绝大部分,反映出了沉积物受矿冶冶炼长期累积污染的效应;所检测沉积物中各单体PAH及ΣPAHs含量均未超过ERM以及FEL,表明大冶湖表层沉积物中PAHs无潜在生态风险;终生致癌风险评价表明大冶湖水体中PAHs通过摄入和皮肤接触风险都处于USEPA推荐的可接受水平范围之内,但都高于瑞典环保局和英国皇家协会推荐的最大可接受风险水平,需要对7种致癌PAHs污染加以防治.  相似文献   

8.
多环芳烃在长江口滨岸颗粒物-水相间的分配   总被引:5,自引:2,他引:3  
利用长江口滨岸水环境中颗粒相与溶解相多环芳烃的实测浓度,获取了多环芳烃化合物在颗粒物-水相间的分配系数Kp.结果表明,分配系数Kp值在507~10 179 L/kg之间,枯季高于洪季,随多环芳烃环数的增加而增大;Koc值与辛醇-水分配系数Kow之间存在较好的线性自由能关系(枯季R2=0.82,洪季R2=0.68),推断出长江口滨岸颗粒物亲脂性较差,对多环芳烃的吸收能力相对较弱.长江口滨岸各采样点多环芳烃化合物的lgKoc值均超过了经典平衡分配模型的预测值上限,多环芳烃两相分配行为不受颗粒物浓度、粒径及上覆水盐度、溶解态有机碳的控制(R2<0.1),表现出主要受POC及非均一性混合物PSC共同影响的特点;扩展后的含PSC相的颗粒物-水相分配模型较为准确地模拟了lgKow<6的多环芳烃化合物野外原位分配过程.  相似文献   

9.
于2009年6月分别采集辽河和太湖表层沉积物样品,测定了多环芳烃(PAHs)和有机氯农药(OCPs)的含量.结果表明,辽河表层沉积物中∑PAHs含量(干重)为120.8~22120ng/g,平均值为3281ng/g,处于较高的水平;太湖∑PAHs的含量为256.6~1709ng/g,平均值为829.0ng/g,处于中等水平.两采样区的PAHs以4环和5~6环为主,荧蒽含量最高,PAHs主要因热解产生.辽河和太湖表层沉积物中OCPs的含量均处于较低水平,且均以β-HCH为主.利用相平衡分配法建立了15种PAHs和8种OCPs的沉积物基准值,对沉积物中PAHs和OCPs进行了生态风险评估,结果显示辽河流域的浑河段均有∑PAHs、∑DDTs和∑HCHs超标点位,具有较大的生态风险;太湖流域未发现超标点位,沉积物中各类污染物中含量均未超过基准值,生态风险较小.  相似文献   

10.
该文在海南文昌清澜港及八门湾设置18个采样站位,采集表层沉积物样品,以GC-MS分析了样品中优先控制的16种PAHs。研究结果表明:16种PAHs在表层沉积物样品中均有检出,PAHs总浓度在179.51~1 233.93 ng/g之间,平均浓度为322.48 ng/g。运用特征化合物比值和FA/MLR共同确定PAHs的主要来源分别为化石燃料和木材等的燃烧、石油产品的挥发和泄露、汽油机动车排放,3种来源对总PAHs的贡献率分别为69.5%、19.6%、10.9%。ERL评价单组分PAHs潜在生态风险极少产生负面生态效应;MERM-Q分析表明,PAHs综合生态风险可能性比较小。  相似文献   

11.
研究了白洋淀表层沉积物中US EPA 16种优先控制的多环芳烃(PAHs)的分布特征和污染来源,其w(PAHs)为101.3~1 494.8 ng/g (平均值为353.0 ng/g),与国内其他的湖泊和河流相比,整体处于中等污染水平. 安州采样点沉积物中w(PAHs)最高,污染最严重;其次为小田庄、烧车淀、王家寨;污染较轻的采样点为枣林庄、光淀、圈头和端村. 在16种多环芳烃单体中,菲、荧蒽、芘、苯并[b]荧蒽所占比例较大. w(荧蒽)/w(芘)和w(菲)/w(蒽)2个比值显示, 白洋淀沉积物中多环芳烃的含量和分布受石化材料燃料、煤炭及薪柴燃烧影响较大. 风险评价表明,安州采样点表层沉积物对生物存在潜在危害,而其他采样点沉积物潜在风险处于较低水平.   相似文献   

12.
为探讨农村居民区沟塘水质对周边浅层地下水的影响,在河南省某县选择典型沟塘,分别在枯水期和丰水期采集沟塘水和周边浅层地下水样品,采用高效液相色谱检测16种多环芳烃(PAHs)的含量,分别描述并比较枯丰水期PAHs的污染特征及其生态与健康风险.结果表明,枯水期沟塘水中BaP含量、∑PAHs、TEQ(BaP)含量和致癌性PAHs占比分别为0.911ng/L、29.3ng/L、1.64ng/L和28.1%,均低于丰水期;浅层地下水中各指标分别为5.37ng/L、291ng/L、12.5ng/L和25.9%,高于丰水期.枯丰水期沟塘水和浅层地下水中PAHs均主要源于生物质和煤炭燃烧.浅层地下水PAHs的含量与沟塘水具有关联性,即距离沟塘越近,PAHs含量越高,枯水期的关联性低于丰水期.饮用浅层地下水致PAHs暴露的累积非致癌风险HQ为2.21x10-3;累积致癌风险R为1.56x10-6,72.0%成人R大于1x10-6,枯水期BaA、BbF和InP对成人致癌风险的贡献分别为72.1%、9.10%和4.80%.枯水期沟塘水PAHs总量为低等生态风险,丰水期为中等风险,不同沟塘其生态风险不同.纳污的C5沟塘水丰水期PAHs为高生态风险水平,BaA的贡献最大(占40.7%);纳污和养殖的A2枯水期和C3沟塘水丰水期PAHs为中等风险2水平.综上,沟塘水PAHs与周边浅层地下水具有关联性,枯水期沟塘水PAHs总量具有低生态风险,饮用周边浅层地下水的致癌风险高于1x10-6.  相似文献   

13.
长江河口表层沉积物中PAHs的生态风险评价   总被引:8,自引:4,他引:4  
2005年11月26—29日对长江河口部分表层沉积物中多环芳烃类化合物(PAHs)的污染现状进行了调查和研究,分析了其中16种PAHs单体含量. 结果表明,长江河口表层沉积物中属于美国优先控制的16种PAHs共检出15种,仅萘未被检出,w(PAHs)为355.72~2 480.85 ng/g,平均值为1 040.29 ng/g. 表层沉积物中以4环和5~6环PAHs为主,二者之和占w(PAHs)的80%以上. 长江河口表层沉积物中PAHs污染主要来源于矿物燃料的高温燃烧,但部分区域也不排除石油源输入的可能性. 与沉积物风险评估值相比,严重的生态风险在长江河口表层沉积物中不存在,然而排污口附近沉积物存在一定的生态风险.   相似文献   

14.
太湖表层沉积物中PAHs和PCBs的分布及风险评价   总被引:24,自引:5,他引:19       下载免费PDF全文
采用GC-EI-MS联用技术分析了太湖18个表层沉积物样品中多环芳烃(PAHs)和多氯联苯(PCBs)的含量.共检出28种PAHs,其总浓度范围为90.6~1.04×103ng/g,其中16种优控PAHs的浓度范围为63.1~885ng/g,最高浓度出现在竺山湖;56种PCBs的浓度范围为1.35~13.8ng/g,最高浓度出现在新塘港.利用分子比和因子分析/多元线性回归模型分析PAHs的来源,结果显示,太湖PAHs主要来源于燃烧,其中木柴、煤炭燃烧和油料燃烧的贡献率分别为45%和50%.PCBs同族体组成分析结果表明,PCBs的同系物组成呈现Aroclor 1242和Aroclor 1254的混合来源特征.太湖表层沉积物中PAHs和PCBs的二 毒性当量(以TCDD计)范围为0.64~3.35pg/g,风险评价结果表明,太湖沉积物中的PAHs和PCBs尚未对周围环境造成不利影响.  相似文献   

15.
采用GC-MS分析了成渝经济区内六大水系(长江、 岷江、 沱江、 涪江、 渠江以及嘉陵江)中19个表层沉积物样品的16种美国EPA优先控制多环芳烃(PAHs).结果表明,PAHs的含量范围为48.2 ~723.1 ng/g(平均276.1 ng/g),最高值在长江流域石门子采样点,最低值在涪江流域百倾采样点.各流域表层沉积物中PAH16含量总体趋势为:长江(358.6 ng/g) > 岷江(322.2 ng/g) > 沱江(292.7 ng/g) > 渠江(260.6 ng/g) > 嘉陵江(240.2 ng/g) > 涪江(82.4 ng/g).沉积物中PAHs组成为: 2 ~ 3环占15.1% ~ 52.3%、 4环占24.4% ~ 44.5%、 5 ~ 6环占3.3% ~ 56.9%.采用分子比值法cAn/c(An+ Phe)cFlA/c(FlA + Pyr)以及cInP /c(InP + BghiP)分析污染来源,表明各流域表层沉积物中PAHs主要源于草、 木和煤的燃烧及石化产品的燃烧.采用表观效应阈值法进行生态风险评价,表明表层沉积物中的PAHs对生态环境的影响目前还处于较低风险水平.  相似文献   

16.
本文研究了象山港多环芳烃(PAHs)在沉积物-海水中的分布特征,于2017年1月对港口9个采样点的沉积物和海水中16种优先控制PAHs进行分析,采用同分异构比值法和逸度方法进行来源分析和扩散行为研究。沉积物中PAHs范围为17.51×10–9~84.41×10–9,主要为高环PAHs,处于轻度污染等级。沉积物中多环芳烃主要来自高温燃烧源。表层水体、中层水体和底层水体中PAHs范围分别为41.78~105.72 ng/L、41.51~106.34 ng/L和9.18~145.17 ng/L,主要由低环PAHs组成。表层水体中PAHs主要来源于石油泄漏和石油燃烧。利用逸度系数判断PAHs扩散行为,萘(Nap)、苊(Ace)和芴(Flo)由沉积物向海水释放;苊烯(Acy)、菲(Phe)、蒽(Ant)和芘(Pyr)在沉积物和海水中处于动态平衡;荧蒽(Flu)、苯并[a]蒽(BaA)、?(Chr)和苯并[b]荧蒽(BbF)主要从海水向沉积物扩散并富集。  相似文献   

17.
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in fiver surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQvalues ranged from 3.6 × 10^-5 to 35 and 64% of samples gave a HQ 〉 1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region.  相似文献   

18.
滴水湖及其鲫鱼体内PAHs分布特征与影响因素分析   总被引:1,自引:0,他引:1  
通过测定滴水湖水体、颗粒物和沉积物体系PAHs含量,探讨其分布与组成特征、影响因素及污染来源.结果表明,滴水湖水体中溶解态、颗粒态和沉积物中PAHs平均浓度分别为16.78ng/L、33.02ng/g和40.98ng/g.统计分析表明,水体酸碱度以及电导率与溶解态低环PAHs之间存在显著相关性,总有机碳(TOC)与沉积物中高环PAHs浓度之间存在显著相关性.溶解态的PAHs来源主要表现为草、木和煤的高温燃烧,部分样点表现为石油源;颗粒态PAHs则主要表现为高温燃烧以及石油泄漏源;而沉积物PAHs的来源则较复杂,除了草、木及煤的高温燃烧源和石油泄漏源,还有部分样点表现为石油的高温燃烧源.鲫鱼肌肉、卵部以及鳃部PAHs含量的测定结果表明,鲫鱼不同部位对PAHs的富集能力具有较大差异.鳃部总PAHs含量最高,其次为鲫肉部分,鲫卵所含PAHs浓度最少.与国内外其他研究相比较,滴水湖鲫鱼体内PAHs含量处于较低水平,但鲫鱼部分样品的BaP等当量浓度略高于EPA规定的可食性生物器官中PAHs含量的上限值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号