首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife, including bats, is capping the concentration of cyanide in tailings discharged to open impoundments at 50 mg/L WAD.  相似文献   

2.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A . m?2 resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

3.
Paper mill wastewater leads to a serious damage on the environment owing to the high content of organic matters, suspended solids, toxic substances, and lignin. Hence, exploring new treatment technologies is the passion of environmental engineers to minimize the effluent impact on the environment and cleaner production aspects. This research focused on the performance of full-scale coagulation-fluctuation/DAF system for pre-treatment of high strength wastepaper-recycling wastewater and its effect on biodegradability improvement. To optimize unit performance, optimum coagulant and flocculant doses were firstly determined by jar test without prior change and adjustment of pH in lab-scale experiments. The optimum dosages were obtained by 1500 mg L?1 polyaluminum chloride (PACl) as coagulant coupled with 40 mg L?1 cationic polyacrylamide (C-PAM) as flocculant. Percentage removals of 39?±?10, 6.8?±?3.6, 31.0?±?6.7, 24.0?±?3.8, and 33.0?±?20.0 were achieved for COD, sCOD, BOD5, sBOD5, and color, respectively. The average BOD5 to COD ratio after pre-treatment increased from 0.44 to 0.5, whereas the ratio of sBOD5/sCOD dropped from 0.65 to 0.53. A superior effectiveness in reduction of TSS (98.1%) and VSS (98.4%) was also achieved. The results show that the application process is able to prevent malfunction operation in the following bioreactors which is obtainable through bio-treatability enhancement of pre-treated wastewater and reducing the risks of clogging and sludge washout. Attached growth processes are suggested to be applied in the further anaerobic/aerobic processes because of high proportion of soluble fraction of COD in the effluent to avoid poor floc formation and dispersed growth problems.  相似文献   

4.
A method combining ultrasound-assisted emulsification–microextraction (USAEME) with gas chromatography–mass spectrometry (GC–MS) was developed for simultaneous determination of four acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, and diclofenac, as well as four phenols, 4-octylphenol, 4-n-nonylphenol, bisphenol A, and triclosan in municipal wastewaters. Conditions of extraction and simultaneous derivatization were optimized with respect to such aspects as type and volume of extraction solvent, volume of derivatization reagent, kind and amount of buffering salt, location of the test tube in the ultrasonic bath, and extraction time. The average correlation coefficient of the calibration curves was 0.9946. The LOD/(LOQ) values in influent and effluent wastewater were in the range of 0.002–0.121/(0.005–0.403) μg L?1 and 0.002–0.828/(0.006–2.758) μg L?1, respectively. Quantitative recoveries (≥94 %) and satisfactory precision (average RSD 8.2 %) were obtained. The optimized USAEME/GC–MS method was applied for determination of the considered pharmaceuticals and phenols in influents and treated effluents from nine Polish municipal wastewater treatment plants. The average concentration of acidic pharmaceuticals in influent and effluent wastewater were in the range of 0.06–551.96 μg L?1 and 0.01–22.61 μg L?1, respectively, while for phenols were in the range of 0.03–102.54 μg L?1 and 0.02–10.84 μg L?1, respectively. The removal efficiencies of the target compounds during purification process were between 84 and 99 %.  相似文献   

5.
In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box–Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.  相似文献   

6.
7.
The levels of organochlorine pesticides (OCPs) in the water, suspended solids, and sediments from Lake Chaohu during the high water level period were measured by a solid-phase extraction gas chromatograph–electron capture detector. The spatial distributions of the three phases and the water/suspended solids and sediment/water partition coefficients were analyzed. The results showed the following: (1) The mean contents of OCPs in the water, suspended solids, and sediments were 132.4?±?432.1 ng/L, 188.1?±?286.7 ng/g dry weight (dw), and 13.7?±?9.8 ng/g dw, respectively. The dominant OCP components were isodrin (85.1 %) for the water, DDTs (64.4 %) for the suspended solids, and both isodrin (48.5 %) and DDTs (31.8 %) for the sediments. (2) β-HCH was the primary isomer of HCHs in the water and sediments, and the proportions were 61.7 and 41.3 %; γ-HCH was the primary isomer in the suspended solids, accounting for 49.3 %; p,p′-DDT was the dominant content of DDTs in the water and suspended solids, whereas p,p′-DDD was the main metabolite of DDTs in the sediments. (3) The concentrations of contaminants in the water from the western lake were greater than those from the eastern lake, but the concentrations in the suspended solids from the western lake were less than those from the eastern lake. (4) There was no significant correlation between the water–suspended solids partition coefficient K d and the n-octanol–water partition coefficient K ow, and between the sediment–water organic-C weighted sorption coefficients K oc and K ow.  相似文献   

8.
This work considered the environmental impact of artisanal mining gold activity in the Migori–Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg?1), sediment (430 μg kg?1) and tailings (8,900 μg kg?1), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori–Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment.  相似文献   

9.
Lai CL  Lin SH 《Chemosphere》2004,54(3):235-242
Treatment of copper chemical mechanical polishing (CMP) wastewater from a semiconductor plant by electrocoagulation is investigated. The CMP wastewater was characterized by high suspended solids (SS) content, high turbidity (NTU), chemical oxygen demand (COD) concentration up to 500 mgl(-1) and copper concentration up to 100 mgl(-1). In the present study, electrocoagulation was employed to treat the CMP wastewater with an attempt to simultaneously lower its turbidity, copper and COD concentrations. The test results indicated that electrocoagulation with Al/Fe electrode pair was very efficient and able to achieve 99% copper ion and 96.5% turbidity removal in less than 30 min. The COD removal obtained in the treatment was better than 85%, with an effluent COD below 100 mgl(-1). The effluent wastewater was very clear and its quality exceeded the direct discharge standard. In addition, sludge settling velocities after electrocoagulation were measured and the data were employed to verify the empirical sludge settling velocity models. Finally, the sludge settling characteristic data were also utilized to establish the relation between the solids flux (G) and the initial solids concentration.  相似文献   

10.
Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg?·?L?1, 0.01 to 0.48 mg?·?L?1, and 0.02 to 2.43 mg?·?L?1, respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p?<?0.01), while TDP was positively correlated with BOD/COD only (p?<?0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p?<?0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p?<?0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.  相似文献   

11.
The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L?1 COD and 30 mg L?1 BOD5) and inorganic pollutants (e.g., up to 0.5 mg L?1 Cu and 0.1 mg L?1 Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.  相似文献   

12.
This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg?1 for As (with a mean of 25.39 mg kg?1 for tailings), 7.9 and 261.5 mg kg?1 (mean 189.83 mg kg?1 for tailings) for Co, 17.7 and 885.03 mg kg?1 (mean 472.77 mg kg?1 for tailings) for Cu, 12,500 and 400,000 mg kg?1 (mean 120,642.86 mg kg?1 for tailings) for Fe, and 28.1 and 278.1 mg kg?1 (mean 150.29 mg kg?1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.  相似文献   

13.
The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity?=?0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3–4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.  相似文献   

14.
To improve understanding of phosphorus (P) retention processes in small constructed wetlands (CWs), we analysed variations in sediment deposition and accumulation in four CWs on clay soils in east-central Sweden. Sediment deposition (in traps) generally exceeded the total suspended solids (TSS) load suggesting that resuspension and wetland base erosion were important. This was confirmed by quantification of particle accumulation (on plates) (1–23 kg m?2 year?1), which amounted to only 13–23% of trap deposition. Spatial mean P concentrations in accumulated sediment on plates (0.09–0.15%) were generally similar to temporal mean P concentrations of particles in water (0.11–0.15%). Deposition/accumulation was minor in one wetland with high hydraulic load (400 m year?1), suggesting that such small wetlands are not efficient as particle sinks. Economic support for CWs are given, but design and landscape position are here demonstrated to be important for effective P retention.  相似文献   

15.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

16.
Abstract

Nitrogen transformations and their effect on aerobic suspended growth treatment of an industrial wastewater were studied in three parallel bench-scale reactors operated at 5 "C at mean cell residence times (MCRT) of 15, 30, and 60 days. In normal process wastewater, the bulk of influent nitrogen was in organic form, and the fraction transformed was almost totally incorporated into synthesized biomass. Assimilative control by heterotrophs maintained ammonianitrogen levels below permitted effluent levels, and nitrification was not significant. Although volatile suspended solids had a nitrogen content of only 5% to 8%, effective organics removal was maintained, and total organic carbon and filtered daily average five-day biochemical oxygen demand (BODS) were below permitted effluent levels. A marked improvement in settleability and lower effluent total suspended solids was achieved by adding ammonia-nitrogen to the wastewater in excess of stoichiometric growth requirements.

During a batch production cycle of a cationic chemical, the ratio of nitrogen to chemical oxygen demand and the fraction of the total influent nitrogen in soluble form increased in the wastewater. Reactor effluent ammonia levels increased to above permit levels at all three MCRTs during treatment of wastewater containing cationic production effluents. The magnitude of ammonia increase was greater for longer MCRTs, suggesting that synthesis of cell mass was not capable of assimilating the increased ammonia supply under these non-steady conditions. The experimental results suggest several potential strategies for operating the aerobic process at the treatment facility, including adding nitrogen to improve settleability and discontinuing these additions when wastewater contains a high ratio of nitrogen to chemical oxygen demand and an elevated soluble nitrogen fraction  相似文献   

17.
Iron electrodes were used for electrocoagulation (EC) treatment of wastewater from a dairy plant. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD), total solids (TS) and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and three repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using iron electrodes showed that electric current application for 15 minutes, an initial sample pH close to neutral (pH 7.0) and a current density of 50 A (.)(m-2) resulted in a significant reduction in COD by 58 %; removal of turbidity, suspended solids and volatile suspended solids by 95 %; and a final treated effluent pH of approximately 9.5. Negative consequences of the type of electrode used were the emergence of an undesirable color and an increase in the proportion of dissolved solids in the treated effluent.  相似文献   

18.
In this study, surface water samples from the Wenyu River and the North Canal, effluent from major wastewater treatment plants (WWTPs) in Beijing, and wastewater from open sewers that discharge directly into the river system were collected and analyzed for 16 priority USEPA polycyclic aromatic hydrocarbons (PAHs). Concentrations of these 16 PAHs ranged from 193 to 1790 ng/L in river surface waters, 245 to 404 ng/L in WWTP effluents, and 431 to 2860 ng/L in the wastewater from the small sewers. The WWTP effluent was the main contributor of dissolved PAHs to the river, while wastewater from the small sewers contributed both dissolved and suspended particulate matter-associated PAH to the river as indicated by the high dissolved organic carbon and suspended particulate matter contents in the wastewater. Although the flow from each open sewer was small, a PAH discharge as high as 44 kg/year could occur into the river from these types of sewers. This amount was equivalent to about 22 % of the PAH loads discharged into the North Canal downstream from Beijing, whereas the remainder was mainly released by the major WWTPs in Beijing.  相似文献   

19.
Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.  相似文献   

20.
Effects of silicon and copper on bamboo grown hydroponically   总被引:1,自引:0,他引:1  
Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. “Malay Dwarf ” was performed. The bamboo plants were first submitted to a range of Si supplementation (0–1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 μM Cu2+ was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g?1 in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg?1), but was also found in leaves (16.6 mg kg?1) and stems (9.8 mg kg?1). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号