首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤重金属污染成为食品安全的重大隐患,农林废弃物生物炭来源广泛,成本低,已被广泛用于土壤重金属污染修复。本文综述了农林废弃物生物炭的制备方法及影响其性能的关键因素,并重点探讨了利用农林废弃物生物炭钝化土壤典型重金属的作用机制。发现木质、竹、秸秆、稻壳和动物粪便等材料被广泛用于生物炭制备,热解温度、热解停留时间以及原材料种类均会影响生物炭的性能,其中植物生物炭比表面积的增加、吸附性能和重金属固定性能的提高均高于牛粪生物炭,在300℃高温热解制得的生物炭含有更多的含氧官能团,而在500~700℃高温热解制得的生物炭含有更多的微孔和更大的表面积,高热解温度下适当的停留时间有助于生物炭结构的形成。此外,生物炭还可以影响土壤微生物的多样性和种类来提高吸附能力,通过络合沉淀固定汞(Hg)、镉(Cd)和铜(Cu),通过静电吸附、络合作用和阳离子交换来固定铬(Cr)、砷(As)、锌(Zn)和铅(Pb)。最后,为确保生物炭的安全生产和可持续利用提出了未来的研究方向。  相似文献   

2.
农业废弃物资源化利用和无害化处理是实现农业可持续发展和发展循环经济的有效途径,对薏仁米(Semen Coicis)秸秆制备生物炭吸附剂,实现有机固体废弃物资源化利用,解决重金属废水处理难题,以薏仁米秸秆为原料,采用快速热解法制备生物炭。为探明不同温度下制备的薏仁米秸秆生物炭对重金属Hg~(2+)的去除机制及机理,并用扫描电子镜-能谱分析法(SEM-EDS)、傅立叶变换红外光谱法(FT-IR)、氮吸附法(BET)、X射线光电子能谱法(XPS)脱附对制备的生物炭进行了表征,研究其对水中Hg~(2+)的吸附特性及机制。通过结果表明,随裂解温度的升高,生物炭的孔径尺寸逐渐增大,表面极性官能团逐渐减少,比表面积、孔隙容积呈现先增加后减小的趋势。薏仁米秸秆生物炭具有丰富的蜂窝状孔结构和-COOH、-OH等表面活性基团。生物炭对质量浓度小于100 mg·L~(-1)溶液中Hg~(2+)的去除率大于92%,且生物炭对Hg~(2+)的去除率主要发生在前1 h吸附时间内,然后趋于平衡;随添加量的增加,生物炭对Hg~(2+)去除效率呈现先增加后减小的趋势,含量为2 g·L~(-1)时生物炭对水中Hg~(2+)的去除效率最高,且700℃制备的生物炭对Hg~(2+)的去除效率最高,最大吸附量可达235.3mg·g~(-1)。吸附平衡等温线和吸附动力学结果表明,薏仁米秸秆生物炭对Hg~(2+)的吸附过程符合Langmuir等温吸附模型和准二级动力学吸附模型,其对Hg~(2+)的吸附为单层吸附;结合X射线光电子能谱和立叶变换红外光谱,吸附作用机制主要以共沉淀和表面络合为主,Hg-π非共价相互作用为辅的形式结合机理。  相似文献   

3.
为明确秸秆生物质炭对酸化茶园土壤改良及温室气体排放的影响,采用室内培养试验方法,研究了小麦秸秆生物质炭添加(对照CK:0 g·kg~(-1);低生物质炭B1:8 g·kg~(-1);中生物质炭B2:24 g·kg~(-1);高生物质炭B3:48 g·kg~(-1))对茶园土壤pH值和温室气体排放的影响。结果表明,与对照组CK相比,添加生物质炭显著抑制了酸性茶园土壤N2O的排放(P=0.000),但抑制效应并未随生物质炭添加量的增加而加强,培养期间各处理N2O累积排放量分别为:CK 2.366 mg·kg~(-1),B1 0.444mg·kg~(-1),B2 0.142 mg·kg~(-1),B3 0.207 mg·kg~(-1)。低生物质炭(8 g·kg~(-1))和中生物质炭(24 g·kg~(-1))处理的综合增温潜势(GWP)分别比对照组CK降低了33.45%和25.77%,而高生物质炭处理(48 g·kg~(-1))与对照处理差异不显著。这表明施用中低量生物质炭更有利于茶园土壤的固碳减排。此外,生物质炭显著提高了酸化茶园土壤p H值,生物质炭添加比例越大,p H值越高,故施用作物秸秆生物质炭有利于酸化土壤改良。相关性分析结果表明,土壤N_2O排放与pH值之间呈显著负相关关系,土壤p H值的升高可能是引起N_2O排放量降低的重要原因。  相似文献   

4.
以牛粪和水稻秸秆为原料,分别在300℃和500℃条件下制备生物炭,同时通过共沉淀方法制备生物炭基针铁矿复合材料,研究生物炭及生物炭基复合材料对水中莠去津吸附特征。SEM和XRD分析结果表明,复合材料表面粗糙程度增加,2θ在21.2°、33.4°、36.6°、47.6°处出现针铁矿的特征衍射峰,生物炭基针铁矿复合材料制备成功。通过对吸附动力学和等温吸附平衡分析发现,生物炭对莠去津的吸附行为更符合准二级动力学方程,等温吸附过程符合Freundlich模型(r~2为0.925—0.996)。在25℃条件下,莠去津在300℃和500℃条件下制备的针铁矿负载牛粪生物炭上的吸附量分别是原生物炭上吸附量的1.59倍和2.99倍,在针铁矿负载水稻秸秆生物炭上的吸附量分别是原生物炭上吸附量的2.02倍和1.73倍。比表面积和孔结构数据显示,生物炭基复合材料的比表面积是原生物炭材料的4.41—20.8倍,制备生物炭材料的孔结构以中孔为主。莠去津在生物炭上的吸附大体表现为吸热的自发过程。对不同材料制备的生物炭及与生物炭基复合材料吸附性能进行对比,结果表明水稻秸秆制备的生物炭对莠去津的吸附性能优于牛粪制备的生物炭,生物炭基针铁矿复合材料对莠去津的吸附效果优于原生物炭。随制备温度的升高,相同材料生物炭对莠去津吸附性能略有增加。研究结果可为生物炭及生物炭基针铁矿复合材料去除水中莠去津的应用提供理论依据。  相似文献   

5.
以控制除草剂污染为目标,对水稻秸秆进行低温(200和350℃)限氧热解制备生物炭,考察其对异丙甲草胺的吸附和缓释作用。结果表明,热解温度为350℃时制备的生物炭(D350)比表面积为23.2 m2·g-1,对异丙甲草胺的吸附能力明显高于秸秆原料,与200℃时制备的生物炭(D200)接近。但是,D350生物炭对异丙甲草胺的表面吸附作用更强,且脱附滞后指数(5.35)明显高于D200生物炭(2.07),脱附滞后效应更明显。以生物炭为载体制备的颗粒制剂可延缓除草剂释放,水中释放动力学模型参数nr值接近Fickian扩散模型的0.50,且释放50%活性成分所需时间(t50)与脱附滞后指数呈正相关。  相似文献   

6.
土壤重金属污染因其隐蔽性、滞后性及对环境和人体健康的危害性,已引起广泛关注。生物炭因具有较大的孔隙率、比表面积及丰富的表面官能团,常用来修复重金属污染土壤。秸秆作为农业废弃物,将其制备为生物炭是其资源化利用和减少环境污染的有效途径。因此,本文综述不同秸秆生物炭的原料、制备技术和改性方法等对吸附重金属的影响,探讨其对重金属的吸附机理以及修复重金属污染土壤实际应用效率与影响因素,包括:(1)秸秆种类及制备温度对生物炭特性和重金属污染土壤修复效率的影响;(2)秸秆生物炭吸附/钝化土壤重金属的过程与机理;(3)可提高生物炭修复重金属污染土壤效率的改性技术及其实际应用效率和影响因素。并结合秸秆生物炭制备和应用中存在的问题提出展望,以期为提高秸秆生物炭在重金属污染土壤修复效率,实现农业废弃物资源化回收利用,减少环境污染提供理论基础和技术参考。  相似文献   

7.
4种温度条件下制备的稻草炭对环丙氨嗪的吸附特征   总被引:1,自引:0,他引:1  
在200、400、600和800℃条件下利用稻草厌氧热解制备稻草生物质炭,测定稻草炭的矿物结构、表面性质和元素组成,研究稻草炭对废水中环丙氨嗪的吸附特征,为环丙氨嗪废水处理和农作物秸秆的资源化利用提供参考.结果表明,稻草炭含有石英、方解石和氯化钾晶体等矿物成分,主要元素为C、O、Si.傅里叶红外光谱(FTIR)、扫描电镜(SEM)和比表面积测定结果表明,稻草炭具有明显的多孔结构和丰富的含氧有机官能团,高温制备(≥600℃)的稻草炭比表面积较大.随着烧制温度的增加,稻草炭对环丙氨嗪的吸附量明显增加.Langmuir方程拟合得到200、400、600和800℃条件下制备的稻草炭对环丙氨嗪的最大吸附量分别为4 200、6 365、144 865和167 084 mg· kg-1,接近于商品活性炭的最大吸附量(177 305 mg·kg-1),600和800℃条件下制备的稻草炭对环丙氨嗪的最大吸附量分别是等量稻草秸秆的16.8和20.1倍.稻草炭对环丙氨嗪的吸附过程符合一级动力学方程,环丙氨嗪初始质量浓度为100和200 mg·L-1时,高温制备的稻草炭达到吸附平衡的时间分别为5和8h左右.环丙氨嗪初始质量浓度为500 mg·L-1时,pH值为5~ 10范围内,支持电解质为1~100 mmol·L-1 NaNO3条件下,环丙氨嗪在600和800℃制备的稻草炭上的吸附没有受到pH值和离子强度的明显影响.  相似文献   

8.
雷竹落叶生物炭对微囊藻毒素的吸附性能   总被引:1,自引:0,他引:1  
为探索农业废弃物再生吸附材料对微囊藻毒素的吸附机制问题,采用典型农业废弃物雷竹落叶制备生物炭,研究适宜的制备工艺,探讨吸附条件和有机介质对微囊藻毒素-LR(MCLR)的吸附特性影响及其机制.结果表明,雷竹落叶竹叶生物炭的芳香性随着炭化温度和升温速率的升高而增加,极性指数则减小,同时比表面积也迅速增大,从0.25 m2·g-1到87.09 m2·g-1;竹叶生物炭对水体中MCLR具有较强的吸附能力,吸附量随炭化温度和升温速率的升高而增加,从72.27μg·g-1到624.47μg·g-1;吸附行为符合非线性Freundlich模型,且N指数和lnKF与芳香性和极性大小呈良好的线性关系;吸附效果受pH、反应温度和自然界溶解性有机质(DOMs)的影响,在pH值为3时有最大吸附量,当反应温度升高时吸附量减小,DOMs对MCLR的吸附有明显的竞争作用.适宜的制备工艺生成的雷竹落叶生物炭能有效地去除水体中MCLR.  相似文献   

9.
选取花生壳、稻草秸秆和玉米秸秆为原料制备不同种类生物炭,合成不同生物炭负载纳米零价铁复合材料(BC/n ZVI)。采用比表面积分析、扫描电镜等多种表征方法获得不同BC/n ZVI的物理化学和结构性质,测试BC/n ZVI对水溶液中典型有机氯农药γ-六六六的还原降解效果。结果表明,花生壳、稻草秸秆和玉米秸秆均在300℃制备条件下有较高的产率和较好的吸附效果;制备的BC/n ZVI颗粒呈球状结构,以花生壳BC/n ZVI分散性为最好;在水相实验中,添加BC/n ZVI对γ-六六六的去除效果优于单独添加生物炭或者纳米零价铁的效果;3种生物炭基材料中,花生壳BC/n ZVI对水相γ-六六六6 h的去除率为87.53%,反应体系中污染物总降解率达82.33%。  相似文献   

10.
以稻秆为原料,在不同温度(300,400,500,600,700℃)条件下采用限氧控温炭化制备生物炭,用HCl和HF对其进行酸化处理,利用傅立叶变换红外光谱仪、比表面积和孔径测定仪现代分析手段对生物炭酸化前后的表面官能团、比表面积、孔径等特性进行比较,分析制备温度和生物炭表面特性之间的关系,探究制备所需生物炭的最佳温度条件。通过生物炭酸化处理和镉吸附实验结果,研究酸可溶矿物在生物炭吸附镉的贡献及制备温度对生物炭吸附镉能力的影响,为生物炭吸附水体中重金属镉提供科学依据。傅里叶红外分析表明,不同温度生物炭表面官能团存在一定的差异,主要表现为随制备温度升高,烷烃基缺失,甲基-CH3和亚甲基-CH2逐渐消失,形成了芳香环且芳香化程度增加。生物炭酸化后无机矿物Si O2吸收峰逐渐消失,官能团种类并没有发生变化,不同官能团随制备温度变化规律仍与酸化前生物炭一致。表面积及孔径分析结果表明,生物炭孔结构主要为中孔,随着热解温度的升高,比表面积和总孔容有所增大,在600℃达到最大;平均孔径随着制备温度升高而变小。生物炭酸化处理可以显著增大生物炭比表面积,总孔容也有所增加。生物炭酸化后充分去除了矿物质,孔隙结构未发生变化,孔结构仍为中孔,微孔表面积减小。镉吸附实验表明生物炭对镉具有较强的吸附能力,不同温度条件下镉吸附率均高于75%,且随温度升高而上升。生物炭经酸化处理后,镉吸附能力显著下降,这说明生物炭中的酸可溶矿物质在镉溶液的吸附过程中有重要作用。  相似文献   

11.
玉米秸秆生物炭对水稻不同生育期吸收积累As、Cd的影响   总被引:1,自引:0,他引:1  
近年来稻米As、Cd含量超标的事件屡有发生,稻米质量安全问题日益突出。通过盆栽种植水稻,向As、Cd复合污染土壤中分别添加质量分数为1.00%的玉米秸秆粉末(CS)和不同温度(300、400、500℃)下制备的玉米秸秆生物炭(CB-300、CB-400、CB-500),分析水稻分蘖期、抽穗期及成熟期各部位或器官中As、Cd含量变化,探讨不同处理对复合污染土壤水稻产量的影响。结果表明,不同时期水稻As、Cd含量分布规律为:根部茎部叶部糙米;玉米秸秆粉末和玉米秸秆生物炭的添加能一定程度上阻碍土壤As、Cd向水稻迁移,与CK相比,各处理均能显著降低不同时期水稻各部位Cd的含量(P0.05),CB-500处理在三大关键生育期处理效果最佳;玉米秸秆生物炭的施加能降低不同时期水稻各部位As的含量,但各处理未达到显著水平;水稻产量方面,与CK相比,生物炭处理和秸秆粉末处理使水稻增产6.93%~55.36%。研究结果可为生物炭对砷镉复合污染土壤的治理与水稻安全生产提供理论依据和数据支持。  相似文献   

12.
老化玉米秸秆生物炭对碱性农田土壤氨氧化作用的影响   总被引:1,自引:0,他引:1  
为探明老化(自然老化、高温老化、冻融循环老化)玉米秸秆生物炭对黄土高原碱性农田土壤氨氧化作用的影响,以玉米秸秆粉末和新鲜玉米秸秆生物炭为对照,在分析不同材料基本特性的基础上,将其按2%(质量比)与土壤充分混匀,开展为期85 d的室内静态土壤培养实验,研究土壤氨氧化速率、氨氧化细菌数量、无机氮含量和p H的动态变化。结果表明,将玉米秸秆400℃热解制成生物炭后,其p H增大4;与新鲜玉米秸秆生物炭相比,老化作用(自然老化、高温老化和冻融循环老化)使生物炭的p H分别降低0.30、0.50和0.99,表面羧基数量分别增加0.031、0.236和0.376 mmol·g~(-1),比表面积分别增大3.43、2.19和0.99 m~2·g~(-1)。室内培养实验表明,碱性农田土壤的氨氧化作用主要源自微生物氧化。土壤培养1周以后(稳定期),同一采样时间点,与玉米秸秆粉末和新鲜玉米秸秆生物炭相比,自然老化、高温老化和冻融循环老化玉米秸秆生物炭均提高了土壤的氨氧化速率(分别介于95.4~138.1、112.6~152.0和137.8~167.8 nmol·g~(-1)·h~(-1))和氨氧化细菌数量(分别介于3.16×10~5~6.65×10~5、3.55×10~5~7.06×10~5和3.35×10~5~8.01×10~5 g~(-1)),促进程度表现为冻融循环老化生物炭高温老化生物炭自然老化生物炭。在整个培养过程中,各处理土壤NH_4~+-N含量随培养时间延长呈降低趋势,NO_3~--N和NO_2~--N含量呈增加趋势。该研究有助于加深理解老化玉米秸秆生物炭还田对碱性农田土壤氨氧化作用的影响,对土壤氮肥生物有效性的提高有指导意义,可为生物炭在黄土高原地区的农业工程应用提供理论借鉴。  相似文献   

13.
易腐垃圾具有产量大、有机易腐性高的特点,带来严重的环境压力和资源浪费.炭化农用是其减量化处理和资源化利用的有效途径.本研究以山核桃蒲壳、玉米秸秆和易腐垃圾为原料在350、500、650℃条件下热解炭化制备生物质炭,比较植物基生物质炭与易腐垃圾炭理化特性的差异及其影响因素.结果表明,与山核桃蒲壳炭(WSB)和玉米秸秆炭(MB)相比,易腐垃圾炭(PWB)具有碳(C)含量低,氮(N)和灰分含量高的特点.炭化温度对其元素组成影响较弱.当炭化温度由350℃升到650℃时,WSB和MB的C含量分别提高了24.6%和13.2%,氢碳比值(H/C)分别下降了58.7%和34.7%;而PWB的C含量变化不显著,H/C比值仅下降了18.0%.随着炭化温度升高,生物质炭的pH值、EC、水溶性K+和Na+含量呈上升趋势.相关性分析结果表明,灰分与C/N、C含量、水溶性K+含量呈极显著负相关,与N含量、水溶性Na+含量、pH值呈极显著正相关.因此,高灰分含量导致易腐垃圾炭对炭化温度响应弱于植物基生物质炭,同时使易腐垃圾炭能为...  相似文献   

14.
秸秆生物质炭在旱作条件下可通过络合重金属阳离子、提高土壤pH值等途径降低重金属活性和有效性,但是淹水条件下生物质炭对重金属形态的影响研究较少。以30 g·kg~(-1)施用量将不同温度条件下制备的油菜和花生秸秆生物质炭及商品活性炭添加到广东徐闻砖红壤中,并添加5 mmol·kg~(-1)Cu(NO_3)_2和20 g·kg~(-1)葡萄糖,淹水培养49 d,采用连续提取法分级提取不同形态Cu~(2+)并研究其动态变化。结果表明,添加活性炭、400℃条件下制备的油菜秸秆炭和300、400、500℃条件下制备的花生秸秆炭后,淹水培养初期土壤溶液pH值比对照组明显增加,酸溶态Cu~(2+)含量显著降低,还原态和氧化态Cu~(2+)含量有所升高。随淹水时间增加,土壤pH值逐渐降低,导致生物质炭处理土壤中酸溶态Cu~(2+)含量显著升高,生物质炭对Cu~(2+)的钝化效果逐渐减弱并消失,还原态和氧化态Cu~(2+)含量降低。在49 d培养时间内残渣态Cu~(2+)含量变化不大。淹水条件下生物质炭对砖红壤中Cu~(2+)的钝化效果并不持久,甚至由于生物质炭中有机物质分解而产生更多有机酸,导致淹水后期生物质炭处理砖红壤pH值较对照低,反而提高了Cu~(2+)的活性和生物有效性。  相似文献   

15.
本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.  相似文献   

16.
添加生物炭对猪粪好氧堆肥过程氮素转化与氨挥发的影响   总被引:3,自引:0,他引:3  
为了减少好氧堆肥过程中氮素的损失,研究添加生物炭对猪粪好氧堆肥过程中氮素转化和损失的影响。设置不加生物炭对照(S1)以及猪粪秸秆中添加5%(S2)、10%(S3)、15%(S4)生物炭4个处理,监测堆肥过程中堆肥温度、氮素形态及氨挥发速率等的变化。结果表明,与对照相比,添加生物炭能够提高堆肥温度,提前2—3d进入高温期,缩短堆肥周期,提高堆肥品质。生物炭显著增加猪粪堆肥NO_3~--N的含量,降低了NH_4~+-N的含量,有利于NH_4~+-N向NO_3~--N转化;堆肥结束时,处理S2、S3和S4的NO_3~--N含量分别比对照提高了39.64%、46.68%和28.84%;添加生物炭明显降低了堆肥在高温期的氨挥发速率,且氨挥发累积排放量分别比对照降低了18.77%、25.35%和26.39%。与堆肥前相比,S1—S4总氮的增加率分别为9.7%、27.5%、28.6%和26.2%,添加10%生物炭的处理固氮效果最好。以上结果说明,猪粪堆肥过程添加生物炭更易促进堆肥腐熟、抑制氨气挥发和减少氮素损失,通过合理物料配比的好氧堆肥可以更有效地实现农业秸秆及猪粪的优质资源化利用。  相似文献   

17.
以商业化副产物聚偏二氯乙烯(PVDC)树脂粉末为碳源制备炭材料并研究了298 K时CO_2的吸附性能.研究结果表明,PVDC树脂直接碳化得到比表面积为1220 m~2·g~(-1)且孔径小于1.5 nm的纯微孔炭材料,CO_2在1 bar下的吸附量高达3.97 mmol·g~(-1).在此基础上用KOH对微孔炭材料进行活化处理,发现KOH活化在增大炭材料比表面积的同时能保持高微孔率,但1 bar下的CO_2吸附量适度降低.高压下CO_2吸附量与炭材料的比表面积呈正比,20 bar时在比表面积为2150 m~2·g~(-1)样品上的吸附量为18.27 mmol·g~(-1),这与其他类型高比表面积吸附剂相比都处于较高水平.  相似文献   

18.
为探讨沿海绿潮藻类浒苔的资源化利用潜力,应用热重-差示扫描量热技术(TG-DSC)对条浒苔(Enteromorpha compressa)和玉米(Zea mays)秸秆的热解特性及其在不同温度下制成的生物炭的性质进行对比。结果表明,条浒苔与玉米秸秆热解特性有较大差异,条浒苔热稳定性较差,热解反应温度低,制备相同热解温度的生物炭需热量较少。对2种材料所制备生物炭的性质分析表明,条浒苔基生物炭的w(碳)为33.47%~37.86%,仅为玉米秸秆基生物炭含量的49.07%~65.41%,其芳香化合程度、比表面积均低于相同热解温度下玉米秸秆基生物炭;但条浒苔基生物炭灰分和氮含量却远高于玉米秸秆基生物炭,分别是玉米秸秆基生物炭的3.83~4.53和6.39~30.33倍。  相似文献   

19.
以沉水植物轮叶黑藻为原材料,采用生物质液化和水热合成技术制备黑藻基炭微球(PCSs),并以磷酸为活化剂对所制备的炭微球进行活化以提升其吸附性能.对PCSs的结构和化学性质进行了表征和分析,同时采用扫描电镜对所制备PCSs的表面形貌进行了观察.并系统研究了PCSs用量、溶液温度及pH值对诺氟沙星(NOR)吸附效果的影响.结果表明,PCSs的BET比表面积、平均孔径、总孔容和等电点分别为67.92 m~2·g~(-1)、6.52 nm、0.11 cm~3·g~(-1)和3.0.PCSs用量、溶液温度及pH值对PCSs吸附去除NOR具有显著的影响,在PCSs用量0.6 g·L~(-1)、溶液温度30℃和pH=6时,10 mg·L~(-1)NOR的吸附去除率可达99.3%.动力学实验表明NOR在PCSs上的吸附行为符合准二级动力学模型,等温吸附曲线符合Langmuir方程,PCSs对NOR的最大单分子层吸附量为36.95 mg·g~(-1).热力学参数表明PCSs对NOR的吸附是一个熵增加的自发吸热反应.  相似文献   

20.
添加农作物秸秆炭对红壤吸附Cu(Ⅱ)的影响   总被引:17,自引:0,他引:17  
为考察秸秆生物质炭在重金属污染红壤修复中的作用,用一次平衡法研究了由花生秸秆、大豆秸秆、稻草和油菜秸秆制备的4种生物质炭对采自江西和广西的2种红壤吸附Cu(Ⅱ)的影响及其机制。结果表明,添加由农作物秸秆制备的生物质炭提高了红壤对Cu(Ⅱ)的吸附量,生物质炭对Cu(Ⅱ)吸附的促进作用随生物质炭添加量的增加而增加,低pH值条件下促进作用更明显。pH值4.0和w为2%生物质炭添加水平下,油菜秸秆炭、花生秸秆炭、大豆秸秆炭和稻草炭使江西红壤对Cu(Ⅱ)的吸附量较对照分别增加97%、79%、51%和54%;花生秸秆炭和大豆秸秆炭使广西红壤对Cu(Ⅱ)的吸附量较对照分别增加61%和44%,当生物质炭添加水平w达4%时,Cu(Ⅱ)吸附量的增幅达97%和165%。生物质炭表面带负电荷,可以同时增加红壤对Cu(Ⅱ)的静电吸附量和专性吸附量,但以增加专性吸附为主。因此,添加秸秆生物质炭可以有效降低Cu(Ⅱ)在酸性红壤中的活动性和生物有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号