首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
裂解温度对稻秆与稻壳制备生物炭表面官能团的影响   总被引:5,自引:0,他引:5  
以稻秆和稻壳为原料,在不同温度下(300、400、500、600、700℃)采用热裂解法制备生物炭,利用比表面积及孔径分析仪测定各生物炭比表面积,以傅里叶红外光谱图(FTIR)和Boehm滴定法分别定性和定量分析不同生物炭表面官能团的种类和数量,分析不同温度对不同原材料制备生物炭的表面官能团种类和数量的影响.结果表明,中、低温裂解条件(300、400、500℃)下,同温度稻壳生物炭(RC-H)比表面积显著高于稻秆生物炭(RC-S);高温裂解(600、700℃)条件下,同温度RC-S比表面积则更大.随裂解温度升高,两种原材料制备的生物炭比表面积均呈显著增大的趋势,其中稻秆在600℃下制备的RC-S比表面积最大,稻壳在700℃下制备的RC-H比表面积最大.FTIR分析结果显示,同一温度下两种材料制备的生物炭特征吸收峰基本相同,且表面基团种类大致相同,但RC-S较RC-H表面官能团更丰富,在热解过程中均形成了芳香环结构,且芳香化程度随裂解温度升高而增加.不同裂解温度下两种材料的生物炭表面官能团变化规律相似,主要表现为烷烃基随裂解温度升高而缺失,甲基(—CH3)和亚甲基(—CH2)逐渐消失,而芳香族化合物增加,芳香化程度增强.Bohem滴定结果表明,各裂解温度下RC-S的表面官能团总量和碱性官能团数量均高于RC-H,而各裂解温度下RC-S的酸性官能团含量均小于RC-H.随裂解温度升高,两种材料制备生物炭的表面官能团变化规律相似,表现为表面官能团总量均减少,酸性官能团含量降低,碱性官能团含量增加.  相似文献   

2.
以玉米秸秆为原料,分别在200、400、600、700℃下制备了不同性质的生物炭,对其性质进行了表征.研究了极性物质普萘洛尔和非极性物质萘在生物炭上的吸附,并对不同物质的吸附机理进行了探讨.结果表明,随裂解温度的升高,生物炭芳香性增强,极性降低,比表面积增大.普萘洛尔和萘的吸附都随生物炭裂解温度的升高而增大,普萘洛尔的lgKoc由3.10(低平衡浓度3 mg·L~(-1))和2.88(高浓度10 mg·L~(-1))增加到3.89和3.67;萘的lgKoc由2.74(低平衡浓度3 mg·L~(-1))和2.65(高浓度15 mg·L~(-1))增加到4.59和4.05.疏水分配作用对萘在低温生物炭上的吸附起主要作用,而随裂解温度升高,表面吸附和孔填充所占贡献逐渐增强.除了以上机理,普萘洛尔还可通过静电吸引进行吸附,而且在BC200上,由于大量极性官能团的作用,有利于静电吸附,其对普萘洛尔的吸附显著大于对萘的吸附;而且存在分子的倾斜吸附或多分子层吸附,单位表面积的吸附量远远大于单分子层吸附预测值.而在高温生物炭上,由于萘的分子较小而憎水性较高有利于孔填充作用,其对萘的吸附大于对普萘洛尔的吸附.  相似文献   

3.
以生活中常见的丝瓜络为原材料,在氮气保护和不同温度(600、700、800、900℃)的条件下热解制备了三维多孔丝瓜络生物炭(LSBC600、LSBC700、LSBC800、LSBC900)。表征了丝瓜络生物炭的理化性质,通过动力学吸附实验和等温线吸附实验研究了不同热解温度条件下制备的丝瓜络生物炭对菲的吸附动力学特征和吸附等温线特征,探讨了可能的吸附机理,评估三维多孔生物炭对菲的去除能力,为水生态系统保护和饮用水安全提供科学依据。结果表明,热解温度会影响生物炭的表面官能团组成,进而影响其芳香性。丝瓜络生物炭呈现多管束堆叠的三维多孔结构,随着热解温度的升高,挥发性物质减少,丝瓜络生物炭的表面变得粗糙,比表面积增大,芳香结构增加;LSBC900的比表面积达到了467 m2·g-1。吸附动力学结果说明,丝瓜络生物炭对菲的吸附是复杂和多阶段的,主导吸附速率的是液膜扩散过程,其次是颗粒内扩散过程。在600-900℃范围内,随着热解温度的升高,丝瓜络生物炭对菲的平衡吸附量升高,吸附速率加快。吸附等温线结果说明,热解温度升高可以提高丝瓜络生物炭对菲的吸附容...  相似文献   

4.
滇池底泥制备的生物炭对菲的吸附-解吸   总被引:4,自引:0,他引:4  
陈宁  吴敏  许菲  陈会会  王震字  宋秀丽  张迪  宁平  潘波 《环境化学》2011,30(12):2026-2031
将滇池草海底泥在不同烧制温度下制成生物炭,并用元素分析法表征其元素组成,溴化钾压片法表征其红外光谱,CO2和N2法表征其比表面积、孔体积、孔径.以菲作为模型化合物来研究有机污染物在生物炭上的吸附一解吸行为,以此深入了解生物炭施用中对有机污染物环境行为和风险的影响.结果表明,生物炭随烧制温度升高,芳香性升高、亲水性降低、...  相似文献   

5.
不同温度对黑碳表面官能团的影响   总被引:8,自引:0,他引:8  
在200-800℃热解水稻秸秆制备BC,以Boehm滴定和FTIR表征BC表面官能团种类和数量,研究了不同温度对BC表面官能团的影响。结果表明:温度对BC表面官能团种类和数量都将产生影响。秸秆碳化后官能团会发生一定变化,表现为醚键(C-O-C)、羰基(C-O)、甲基(-CH3)和亚甲基(-CH2)消失,仍存有羟基(-OH)和芳香族化合物。BC有相同的化学结构,都以芳环骨架为主,但所含官能团种类有一定差异,同种官能团振动形式也不同。酸性和碱性官能团数量都随温度升高先升高后降低,高温和低温不利于官能团的形成,300~600℃对应的碱性官能团含量高于酸性官能团含量。  相似文献   

6.
水稻秸秆生物炭对Pb(Ⅱ)的吸附特性   总被引:17,自引:0,他引:17  
安增莉  侯艳伟  蔡超  薛秀玲 《环境化学》2011,30(11):1851-1857
利用红外(FTIR)光谱、Boehm滴定、比表面积及微孔分析等方法对300℃、400℃、500℃、600℃下制备的水稻秸秆生物炭进行表征,分别记录为RC300、RC400、RC500和RC600,同时研究了4种生物炭在不同平衡时间、pH值、浓度下对Pb(Ⅱ)的吸附特征.结果表明,随着热解温度的升高,生物炭表面含氧官能团...  相似文献   

7.
以牛粪和水稻秸秆为原料,分别在300℃和500℃条件下制备生物炭,同时通过共沉淀方法制备生物炭基针铁矿复合材料,研究生物炭及生物炭基复合材料对水中莠去津吸附特征。SEM和XRD分析结果表明,复合材料表面粗糙程度增加,2θ在21.2°、33.4°、36.6°、47.6°处出现针铁矿的特征衍射峰,生物炭基针铁矿复合材料制备成功。通过对吸附动力学和等温吸附平衡分析发现,生物炭对莠去津的吸附行为更符合准二级动力学方程,等温吸附过程符合Freundlich模型(r~2为0.925—0.996)。在25℃条件下,莠去津在300℃和500℃条件下制备的针铁矿负载牛粪生物炭上的吸附量分别是原生物炭上吸附量的1.59倍和2.99倍,在针铁矿负载水稻秸秆生物炭上的吸附量分别是原生物炭上吸附量的2.02倍和1.73倍。比表面积和孔结构数据显示,生物炭基复合材料的比表面积是原生物炭材料的4.41—20.8倍,制备生物炭材料的孔结构以中孔为主。莠去津在生物炭上的吸附大体表现为吸热的自发过程。对不同材料制备的生物炭及与生物炭基复合材料吸附性能进行对比,结果表明水稻秸秆制备的生物炭对莠去津的吸附性能优于牛粪制备的生物炭,生物炭基针铁矿复合材料对莠去津的吸附效果优于原生物炭。随制备温度的升高,相同材料生物炭对莠去津吸附性能略有增加。研究结果可为生物炭及生物炭基针铁矿复合材料去除水中莠去津的应用提供理论依据。  相似文献   

8.
本研究考察了不同制备温度下(200℃、350℃、500℃、650℃),磷酸改性前后生物炭的理化性质,及其对氧氟沙星(OFL)和诺氟沙星(NOR)的等温吸附行为.采用N2物理吸附、扫描电镜、热重及元素分析等表征,对离子型抗生素在磷酸改性的生物炭上的等温吸附行为进行了研究.结果表明,随着制备温度的增加,改性生物炭的总孔体积不断增大,孔隙结构广泛形成,比表面积急剧增加.磷酸改性有助于提高生物炭的产率以及保留生物炭的极性官能团.OFL和NOR在改性生物炭上的吸附显著高于原始生物炭,且350℃下制备的改性生物炭具有最大吸附量,其吸附机制归因于吸附剂的大比表面积和孔隙填充作用.由于孔隙的利用率降低和炭的疏水性增强,OFL和NOR在更高温度改性生物炭上的吸附量逐渐降低.因此,在处理以上两种污染物时,350℃可作为磷酸改性生物炭的最佳裂解温度,且有利于减少能耗,节约资源.  相似文献   

9.
农业废弃物资源化利用和无害化处理是实现农业可持续发展和发展循环经济的有效途径,对薏仁米(Semen Coicis)秸秆制备生物炭吸附剂,实现有机固体废弃物资源化利用,解决重金属废水处理难题,以薏仁米秸秆为原料,采用快速热解法制备生物炭。为探明不同温度下制备的薏仁米秸秆生物炭对重金属Hg~(2+)的去除机制及机理,并用扫描电子镜-能谱分析法(SEM-EDS)、傅立叶变换红外光谱法(FT-IR)、氮吸附法(BET)、X射线光电子能谱法(XPS)脱附对制备的生物炭进行了表征,研究其对水中Hg~(2+)的吸附特性及机制。通过结果表明,随裂解温度的升高,生物炭的孔径尺寸逐渐增大,表面极性官能团逐渐减少,比表面积、孔隙容积呈现先增加后减小的趋势。薏仁米秸秆生物炭具有丰富的蜂窝状孔结构和-COOH、-OH等表面活性基团。生物炭对质量浓度小于100 mg·L~(-1)溶液中Hg~(2+)的去除率大于92%,且生物炭对Hg~(2+)的去除率主要发生在前1 h吸附时间内,然后趋于平衡;随添加量的增加,生物炭对Hg~(2+)去除效率呈现先增加后减小的趋势,含量为2 g·L~(-1)时生物炭对水中Hg~(2+)的去除效率最高,且700℃制备的生物炭对Hg~(2+)的去除效率最高,最大吸附量可达235.3mg·g~(-1)。吸附平衡等温线和吸附动力学结果表明,薏仁米秸秆生物炭对Hg~(2+)的吸附过程符合Langmuir等温吸附模型和准二级动力学吸附模型,其对Hg~(2+)的吸附为单层吸附;结合X射线光电子能谱和立叶变换红外光谱,吸附作用机制主要以共沉淀和表面络合为主,Hg-π非共价相互作用为辅的形式结合机理。  相似文献   

10.
研究了不同温度(300—900℃)制备的杉木生物炭对水相中肉桂酸的吸附.所有温度下,生物炭对肉桂酸的吸附等温线都呈非线性关系,并以表面吸附为主.高比表面积是800—900℃生物炭吸附量较大的主要因素.为探明生物炭的化学组成对肉桂酸吸附的影响,将吸附量进行了比表面积标化分析,结果表明,300℃生物炭的高含量异质性原子和800—900℃生物炭表面高含量灰分占用了生物炭的吸附点位,导致它们对肉桂酸的标化吸附量明显小于400—700℃生物炭.此外,低pH抑制了600℃生物炭-水溶液中肉桂酸的解离,减少了生物炭表面—OH与解离肉桂酸之间以氢键结合的吸附量,导致400—700℃生物炭中600℃生物炭的标化吸附量最低.研究明确了生物炭的不同性质对肉桂酸吸附的影响及机制,为选择合适的生物炭作为土壤添加剂来降低肉桂酸化感作用提供了科学依据.  相似文献   

11.
梅杨璐  徐晋  张寅  李斌  范世锁  唐俊  周娜 《环境化学》2022,(5):1796-1808
原状生物炭对废水中污染物的去除效果有限,改性是提高其吸附能力的重要途径.本文以水稻秸秆为对象,尿素为改性剂,在700℃无氧热解条件下分别制备了原状秸秆生物炭(RSBC)和氮改性秸秆生物炭(N-RSBC),采用扫描电子显微镜(SEM)、比表面积分析仪(BET)、元素分析仪(EA)、Zeta电位、X射线衍射(XRD)、傅里叶红外光谱(FTIR)以及X射线光电子能谱(XPS)对RSBC和N-RSBC的形貌、比表面积、元素组成、矿物类型和官能团进行表征,考察溶液初始pH值、离子类型和离子强度对生物炭吸附Cu2+的影响,并结合吸附等温线和吸附动力学实验、吸附后表征结果探究生物炭对废水中Cu2+的吸附性能和机理.结果表明,氮改性导致了生物炭的比表面积和孔体积的降低,而生物炭的官能团类型却更加丰富,特别是含氮官能团.当溶液初始pH值从2.0增加到6.0,生物炭对于Cu2+的去除率逐渐增加.对RSBC而言,Na+、K+、Ca2+、Mg2+的存在能略微增加其对Cu...  相似文献   

12.
本研究考察了卡马西平(CBZ)在9种不同条件(裂解温度200、300、500℃,无酸,HCI和HCI-HF)处理的生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.研究结果表明,双室一级动力学模型对吸附动力学提供了更精确的描述.裂解温度和酸处理对CBZ的吸附动力学有显著影响,具体表现为不同酸洗导致矿物含量发生显著变化,矿物对生物炭吸附CBZ的快室吸附单元起主要作用,生物炭内部的芳香环随生物炭的升高而更加致密,生物炭内部的芳香环结构主要贡献于慢室吸附单元.生物炭的矿物组分一方面屏蔽了有机质上的一些吸附点位,另一方面矿物自身可以有效地吸附污染物,酸洗去矿物对生物炭吸附污染物的表观影响可能取决于两个方面的平衡.  相似文献   

13.
本研究探讨用香蕉皮和玉米芯两类生物质制备的生物炭、多壁纳米碳管(CNTs)和活性炭(AC)对氧氟沙星(OFL)的吸附动力学过程.结果表明,吸附动力学过程符合双室一级动力学模型.OFL在两类生物炭上的吸附能力随炭化温度的升高而减弱,归因于生物质炭化程度的增大,芳香性增加,生物炭有机分配相减少.生物炭的O含量极大地影响了其与水分子之间形成水膜的能力,OFL穿透水膜在生物炭表面上的吸附过程成为控制OFL吸附快慢的关键环节.OFL在CNTs和AC的快室吸附比在生物炭上的先趋于平衡,这可能与CNTs和AC较为单一的表面性质有关.CNTs的慢室吸附比AC的慢室吸附需要更长时间达到平衡,主要原因是随着OFL分子在CNTs表面持续吸附,原先由于疏水性作用聚合在一起的CNTs逐渐分散开,暴露出更多的表面积,导致OFL持续的吸附,在动力学上表现为慢室吸附.此外,单位比表面积上CNTs对OFL的吸附量最高,表明如果能够使CNTs充分分散,大量暴露的表面可能使CNTs成为去除有机污染的高效吸附剂.  相似文献   

14.
农林废弃物基生物炭对重金属铅和镉的吸附特性   总被引:2,自引:0,他引:2  
以沙柳、水稻和玉米秸秆3种农林废弃物为原材料,于500℃条件下热解制备生物炭,并通过元素分析、比表面积分析仪、扫描电镜(SEM)和红外光谱(FTIR)等分析方法对所制备的生物炭进行表征。探究了溶液初始pH、干扰离子强度和初始吸附剂投加量等因素对3种生物炭吸附Pb~(2+)和Cd~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性。结果表明:不同生物质制备出的3种生物炭的碱性和灰分含量由高到低依次为沙柳秸秆生物炭(SWB)、玉米秸秆生物炭(CB)和水稻秸秆生物炭(SB),FTIR检测结果显示3种生物炭表面均含有大量含氧官能团;当溶液pH为3~6时,3种生物炭对Pb~(2+)和Cd~(2+)吸附量随pH值的增加而升高,对Pb~(2+)的吸附效果随着溶液中离子强度的增强而降低,而SWB对Cd~(2+)的吸附效果随离子强度的增加而增加;3种生物炭对Pb~(2+)和Cd~(2+)的吸附过程符合准二级动力学模型,R~2均大于0.99,表明生物炭吸附速率主要由化学吸附机制决定;SWB、SB和CB对Cd~(2+)的吸附过程既符合Langmuir模型,又符合Freundlich模型,而生物炭对Pb~(2+)的吸附过程更适合Langmuir等温模型,表明生物炭对Pb~(2+)的吸附近似单分子层吸附,而对Cd~(2+)的吸附存在多分子层吸附。  相似文献   

15.
物理和化学改性方法会引起生物炭理化性质和微观结构的改变,从而影响其对污染物的吸附.通过对玉米粒进行微波膨化制备出膨化生物炭,再用氢氧化钠和磷酸分别对膨化生物炭进行改性制备膨化活性生物炭.利用SEM、BET、FT-IR和XRD等手段对生物炭材料进行表征.通过吸附试验探究了膨化和活化过程对生物炭吸附双酚A(BPA)的影响.结果发现,膨化后炭材料比表面积增大,吸附量增加.膨化结合酸活化的生物炭比表面积最大(856.34 m2·g-1),对双酚A的吸附量也最大(220.73 mg·g-1),吸附量较未经膨化和活化的生物炭提升了7倍.膨化结合碱活化的生物炭孔结构更加发达,平均孔径为6种材料中最大(2.25 nm). Langmuir模型能够较好地拟合6种生物炭对BPA的吸附等温线,说明吸附过程以单层吸附为主.吸附位点能量分析表明,BPA在低浓度时优先占据碳材料表面的高能位点,高浓度时转为占据较低能量的位点.内扩散模型分析说明膨化和活化均能提高扩散过程速率.  相似文献   

16.
利用水生植物苦草和狐尾藻制备镁改性生物炭,并对生物炭的比表面积、孔隙度、元素组成、pHpzc、FTIR、XPS、XRD进行表征,开展吸附水中微囊藻毒素-LR(MC-LR)的研究.结果表明,与未改性生物炭相比,镁改性生物炭具有较大的比表面积和中孔孔容,其表面负载有MgO和Mg(OH)2,且具有更多的含氧基团和更高的pHpzc.以2.0 mol·L-1的MgCl2浸渍制备的镁改性生物炭对MC-LR的去除效果最佳.准一级、准二级动力学、Elovich和颗粒内扩散模型都能在不同程度上较好地描述吸附过程.吸附等温线符合Langmuir和Freundlich模型,且较高的温度有利于对MC-LR的吸附,而较高的pH和较大分子量的DOM会抑制吸附.颗粒内扩散、中孔填充是吸附的重要机制,还可能存在氢键、静电吸引和π+-π EDA相互作用力.本研究为水生植物残体资源化利用提供新的思路.  相似文献   

17.
生物质炭是一种由生物质在缺氧条件下加热制成的生物残渣,因其本身的多孔性被广泛用于土壤以及水体中的污染物的去除。文章着重研究了温度对于生物质炭吸附阿特拉津的影响,同时采用改进的Freundlich模型以及颗粒内部扩散模型对吸附过程进行了评估,并在此基础上建立了生物质炭对阿特拉津吸附数学动力学模型。使用的生物质炭以废弃松木为原材料(Pine Wood derived Biochar,PWB)在450℃、缺氧条件下热解两小时制成(研磨过30目筛)。试验通过扫描电子显微镜、傅里叶变换红外光谱等手段对生物炭的外部表面形态以及生物炭样品吸附阿特拉津前后表面官能团的变化进行表征。采用批量试验方法,定时取样,并通过高效液相色谱测定阿特拉津浓度变化来说明温度对生物炭吸附阿特拉津效果的影响,并拟合相对应的吸附动力学模型。SEM实验表明PWB表面为光滑的浅孔,气孔呈圆形并均匀分散于整个生物质炭表面。吸附反应后的傅里叶红外光谱表明,许多表面峰出现了一定强度的波动,说明反应过程中生物炭与阿特拉津的化学官能团高度结合,在PWB吸附阿特拉津后1 775 cm-1处的谱带强度变化最为突出。生物质炭对阿特拉津的吸附能力随反应温度的升高而升高,当温度为10、18和27℃时,其吸附容量分别为0.494 2、0.730 1、1.098 6 mg·g-1,结果表明该吸附过程是吸热反应。通过测定吸附过程中的活化能,确定化学吸附在生物质炭吸附阿特拉津过程中起主导作用。实验结果表明,PWB在不同的温度条件下对于环境中阿特拉津的去除有很好的应用前景,对阿特拉津污染水的治理除具有一定的参考价值。  相似文献   

18.
土壤重金属污染因其隐蔽性、滞后性及对环境和人体健康的危害性,已引起广泛关注。生物炭因具有较大的孔隙率、比表面积及丰富的表面官能团,常用来修复重金属污染土壤。秸秆作为农业废弃物,将其制备为生物炭是其资源化利用和减少环境污染的有效途径。因此,本文综述不同秸秆生物炭的原料、制备技术和改性方法等对吸附重金属的影响,探讨其对重金属的吸附机理以及修复重金属污染土壤实际应用效率与影响因素,包括:(1)秸秆种类及制备温度对生物炭特性和重金属污染土壤修复效率的影响;(2)秸秆生物炭吸附/钝化土壤重金属的过程与机理;(3)可提高生物炭修复重金属污染土壤效率的改性技术及其实际应用效率和影响因素。并结合秸秆生物炭制备和应用中存在的问题提出展望,以期为提高秸秆生物炭在重金属污染土壤修复效率,实现农业废弃物资源化回收利用,减少环境污染提供理论基础和技术参考。  相似文献   

19.
土壤重金属污染成为食品安全的重大隐患,农林废弃物生物炭来源广泛,成本低,已被广泛用于土壤重金属污染修复。本文综述了农林废弃物生物炭的制备方法及影响其性能的关键因素,并重点探讨了利用农林废弃物生物炭钝化土壤典型重金属的作用机制。发现木质、竹、秸秆、稻壳和动物粪便等材料被广泛用于生物炭制备,热解温度、热解停留时间以及原材料种类均会影响生物炭的性能,其中植物生物炭比表面积的增加、吸附性能和重金属固定性能的提高均高于牛粪生物炭,在300℃高温热解制得的生物炭含有更多的含氧官能团,而在500~700℃高温热解制得的生物炭含有更多的微孔和更大的表面积,高热解温度下适当的停留时间有助于生物炭结构的形成。此外,生物炭还可以影响土壤微生物的多样性和种类来提高吸附能力,通过络合沉淀固定汞(Hg)、镉(Cd)和铜(Cu),通过静电吸附、络合作用和阳离子交换来固定铬(Cr)、砷(As)、锌(Zn)和铅(Pb)。最后,为确保生物炭的安全生产和可持续利用提出了未来的研究方向。  相似文献   

20.
通过考察生物炭、FeAl-LDHs和FeAl-LDHs/生物炭复合材料对土壤中镉的钝化效果,筛选出最佳的钝化材料并分析其钝化机理,为土壤中镉钝化剂的筛选提供理论依据。采用水热法制备了FeAl-LDHs和FeAl-LDHs/生物炭复合材料,分别添加0.4 g FeAl-LDHs、FeAl-LDHs/生物炭复合材料及生物炭于10 g 5、10、20 mg·kg~(-1)人工模拟镉污染土壤,采用二乙烯三胺五乙酸(DTPA)浸取法、毒性特征浸出实验(TCLP)以及改进的BCR连续提取法评价不同材料对土壤中镉的钝化效果,同时考察了FeAl-LDHs/生物炭复合材料钝化镉的稳定性。采用SEM、N_2吸附、FTIR、XRD等手段分析所制备材料的形貌结构和理化特性,揭示复合材料钝化镉的作用机制。结果表明,与FeAl-LDHs和生物炭相比,FeAl-LDHs/生物炭复合材料对DTPA-Cd和镉浸出毒性有较好的钝化效果,其中添加复合材料后5 mg·kg~(-1)镉污染土壤DTPA-Cd含量降低90.08%,浸出毒性降至0.044 mg·L~(-1),反应达到56 d时,镉污染土壤中DTPA-Cd和浸出毒性没有明显增加,5 mg·kg~(-1)土样浸出毒性维持在0.039mg·L~(-1),FeAl-LDHs/生物炭修复效果稳定性较好。这主要归因于生物炭大的比表面积和孔结构有利于表面LDH的负载和分散,为镉的钝化提供了更多的附着位点。同时,FeAl-LDHs/生物炭复合材料表面丰富的含氧官能团和金属-氧键能够与Cd~(2+)发生配位反应,可以促进土壤中镉由弱酸提取态向残渣态转化,降低Cd的生物有效性和迁移性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号