首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
花莉  洛晶晶  彭香玉  解井坤  范洋 《生态环境》2013,(12):1945-1950
微生物是组成生态系统的重要成员,在污染物去除中发挥着重要作用,是生物修复中的主力,然而在石油污染修复过程中,石油烃的疏水性会限制微生物对石油的降解,但一些微生物的细胞代谢物即生物表面活性剂,它是微生物在一定条件下代谢分泌产生的具有一定表面活性,集亲水基和疏水基结构于一分子的两亲性化合物,可以促进油的乳化,提高油的分散程度,增大菌株和油珠的接触机会,促进对石油烃的吸收和降解。在实验室分离得到了7株产表面活性剂石油降解菌株,经分子鉴定可知菌1和菌2都为粘质沙雷氏菌Serratia marcescens,菌3为居植物柔武氏菌Raoultella planticola,菌4,菌6和菌7都为克雷伯氏菌Klebsiella variicola,菌5为蜡状芽孢杆菌Bacillus cereus。主要研究了它们的生长与表面活性剂物质分泌状况的关系,发现随着时间增加,OD值随之增大,表面张力呈现下降趋势;并对菌株产物进行提取和薄层层析,离子型分析和红外光谱分析,初步判断其产物均为阴离子糖脂类;通过pH,初始油质量浓度,接种量和盐度4个单因素的变化研究菌1粘质沙雷氏菌,菌3居植物柔武士菌,菌5蜡状芽孢杆菌和菌6克雷伯氏菌对石油类物质降解能力,发现菌3居植物柔武氏菌和菌5蜡状芽孢杆菌降解性能较好;通过响应曲面法优化蜡状芽孢杆菌的降解条件,得出其最佳降解条件为pH为5.02,油质量浓度为3 g·L-1,接种量为1199.98μL,盐度为0.5 g·L-1时,在此条件下,菌株对石油的降解率为66.94%。  相似文献   

2.
产生物表面活性剂的石油降解菌Acinetobacter BHSN的研究   总被引:5,自引:1,他引:4  
从石油污染土壤中分离筛选获得1株产生物表面活性剂的石油降解菌株BHSN.经形态观察、生理生化试验、16S rDNA 序列分析等将其鉴定为不动杆菌属(Acinetobacter sp.).研究表明,BHSN菌株能降解石油中C13~C32正构烷烃.BHSN菌株生长和产生物表面活性剂的最适温度为25~30 ℃,最适pH为5.0~8.5.LB培养基中添加终质量浓度为10 g·L-1葡萄糖能促进菌体的生长,但不利于表面活性剂的合成;添加蔗糖、乳糖、麦芽糖和木糖对菌体的生长和表面活性剂的合成均有促进作用,其中麦芽糖的促进作用最强.初步研究表明,BHSN菌株产的生物表面活性剂为脂肽类;BHSN发酵液的表面张力由初始68.3 mN·m-1降低到28.6 mN·m-1.  相似文献   

3.
海洋石油污染使石油烃(Petroleum hydrocarbons,PHCs)成为海洋重要有机污染物.快速有效清除石油污染物是当前急需解决的海洋环境问题之一.利用石油烃降解菌(Petroleum hydrocarbon-degrading bacteria,PHDB)进行的原位微生物修复是一种对环境友好且较经济的清除石油污染场所和管理海洋表面溢油的有效技术.本文综述了石油烃降解菌的特性和对环境的适应性.重点分析探讨了引入外源微生物,投加生物表面活性剂、添加营养物质和增加溶解氧含量、采用微生物固定化技术等方法强化原位微生物修复石油污染海洋的机制和研究进展.展望了海洋石油污染微生物修复领域的研究前景.  相似文献   

4.
随着石油的开采和使用,土壤石油烃污染的问题已经十分严峻,研究绿色、高效、低成本的修复技术对于污染土壤修复具有重要意义.通过总结了物理、化学和生物修复技术对石油烃污染土壤的修复效果、影响因素以及优缺点,并针对以上技术的局限性,归纳整理电动-化学氧化、电动-微生物修复、表面活性剂淋洗-生物修复、预氧化-生物修复、植物-微生...  相似文献   

5.
李容榛  李成  赵暹  刘春敬  孟靖凯  谢建治 《环境化学》2019,38(10):2274-2282
从活性污泥中分离出1株以邻苯二甲酸二丁酯(DBP)为碳源和能源生长的高效降解菌DP-2,经形态观察、生化鉴定及16S rDNA序列分析,鉴定该菌株为不动杆菌(Acinetobacter sp.).采用单因素试验研究了不同试验条件(接种量、DBP浓度、NaCl浓度和碳源)对菌株DBP降解特性的影响,结果表明:接种量大于10%时,菌株DP-2在3 d内对初始浓度为10 mg·L~(-1)的DBP降解率可达到90%以上;DBP初始浓度为5—50 mg·L~(-1)时,菌株在6 d内对DBP降解率均能达到90%以上,但高浓度DBP会影响菌株DP-2生长,DBP浓度为1000 mg·L~(-1)时,DBP降解率仅为26.88%;菌株降解DBP的最佳NaCl浓度范围为0—20 g·L~(-1);此外,醋酸钠、蔗糖、葡萄糖添加对于菌株降解DBP均有一定的促进作用,其中葡萄糖效果最为明显.在此基础上,采用响应曲面法优化了菌株降解DBP的培养条件并进行了试验验证,在盐度为5 g·L~(-1),接种量为17.14%,底物浓度为9.81 mg·L~(-1),菌株对DBP的降解率为85.86%.  相似文献   

6.
从山东东营胜利油田附近被石油污染的土壤中分离得到1株高效原油降解菌Z1a-B,依据形态和培养特征,初步鉴定Z1a-B菌株为链霉菌属白孢类群。试验结果表明,该菌株具有较强的溶血和排油活性,说明其产生生物表面活性剂的能力较强。通过气相色谱-质谱联用仪(GC-MS)分析,菌株能基本降解C12~C34的正构烷烃,对烷基苯、菲、甲基菲、萘也具有较强的降解能力。固体培养基配比以麸皮2 g、鸡粪40 g、草炭52.5 g、生石灰1.5g,或麸皮2 g、大米20 g、黄豆粉28 g、生石灰1.5 g较佳,在这2种配比培养基中链霉菌生长快,长势好,产孢子量多。经室内培养试验发现,当土壤中w(原油)=10%时,经Z1a-B菌株处理(35℃,pH 6.5)50 d,土壤原油降解率为67.5%。  相似文献   

7.
对克拉玛依采集的部分石油污染土壤进行了筛选,得到了5组石油烃高效降解混合菌,其中混合菌KL9-1在45℃的条件下,通过7 d的降解,稀油的降解率达到43.27%,稠油的降解率达到20.09%。混合菌KL9-1经过多次分离纯化后,获得3株具有石油烃降解能力的优势单菌,3株单菌对稀油的降解率都在30%以上。结合分离单菌株的形态、生理生化特征和16S rDNA基因序列的分析结果,初步鉴定KL9-1-1为Pseudomonas putida,KL9-1-2和KL9-1-3为Pseudomonas sp.。  相似文献   

8.
嗜冷菌、嗜盐菌、耐重金属菌、耐重油菌等极端微生物广泛存在于极地高寒、盐碱地以及存在重金属、重油等污染的毒性污染土壤中,是胁迫条件下石油烃降解与转化的重要微生物资源。文章从适应机制、降解机理、降解特性、修复实践等角度出发,综述了低温、盐碱、重金属、重油等不同胁迫条件下的石油烃污染土壤微生物修复进展。在石油烃降解机理方面,微生物细胞与油滴的附着机制尚不清楚,而生物表面活性剂的产生和作用机制已经得到了很好的研究。嗜冷菌的适冷机制与细胞膜脂类组成、冷激蛋白、冷适应蛋白、嗜冷酶、能量代谢等有关,低温(15℃)时石油烃降解效率可达70%以上。嗜盐菌具备细胞外被隔离机制和离子反向运输机制,能产生渗透压调节剂、具有独特的渗透压平衡方式,NaCl浓度为30g·L-1时石油烃的降解效率可达60%以上。石油烃降解菌对重金属的耐受机制包括生物吸附、细胞内积累、酶催化转化、生物浸出和生物矿化、氧化还原反应等过程,会影响土壤中重金属的迁移率和生物有效性,提高作物的产量和对重金属的富集。微生物吸收重油的机制包括界面张力降低、选择性堵塞、粘度降低、生物降解和润湿性改变等,对重质原油的总体降解率可达70%以上,但是对其中沥青质单一组分的历史最高生物降解率仅为48%。利用极端微生物修复极端、胁迫条件下的石油污染土壤,应加强菌种培育、未明机制探索、重油组分(沥青质和树脂)降解、风险评估、修复工艺参数优化及推广应用等工作。  相似文献   

9.
生物表面活性剂鼠李糖脂对水体中石油烃降解的促进作用   总被引:3,自引:0,他引:3  
从被含油废水污染的土壤中筛选得到4株能利用柴油为唯一碳源生长的杆菌(X1,X2,X3和X4),经鉴定,这4株菌分别属于沙雷铁氏菌属(Serratiasp.)、不动菌属(Acinetobactersp.)、芽孢杆菌属(Bacillussp.)和氮单胞菌属(Azomonassp.).其中,菌株X4于32℃摇床培养28d后对柴油的降解率达62%,而在相同条件下,添加生物表面活性剂鼠李糖脂后柴油的降解率提高了26%.平板菌落计数结果表明,鼠李糖脂能促进菌的生长,生物量明显增多.对菌株降解反应的动力学研究进一步验证了鼠李糖脂对菌株X4降解石油烃的促进作用,添加了鼠李糖脂的样品组比对照组的半衰期缩短了近1倍.通过设计正交实验,本文研究了培养温度、培养时间、鼠李糖脂的添加量及石油烃的浓度等主要环境因子对水体中石油烃降解的影响.实验结果表明,影响水体中石油烃降解的主导因子是培养时间,其次是培养温度、石油烃的浓度和鼠李糖脂的添加量.图4表2参17  相似文献   

10.
土壤中总石油烃污染(TPH)的微生物降解与修复研究进展   总被引:9,自引:0,他引:9  
微生物降解和修复是处理土壤中总石油烃(TPH)污染最简单、有效的方法之一.论文阐述了土壤TPH污染的产生、危害以及物理、化学、生物等修复方法的各自特点,其中重点介绍了微生物修复方法,论述了土壤中TPH在微生物表面的吸附、转运,在微生物体内的降解以及相关降解酶及基因;详细介绍了电子受体、温度、pH、营养元素等外界因素对微生物修复TPH污染的影响,在此基础上对土壤TPH污染的微生物修复现状和发展趋势进行了讨论.  相似文献   

11.
邻苯二甲酸二(2-乙基己基)酯(DEHP)是一种高分子量的邻苯二甲酸酯(PAE),因高用量、难降解性成为一种全球性的有机污染物.从二沉池活性污泥中筛选出一株革兰氏阴性菌,能够以DEHP作为唯一碳源和能源,高效降解DEHP,命名为XB.基于其形态、生化特性以及16S r RNA基因序列分析,鉴定为Pseudomonas sp..优化其降解100 mg·L~(-1)DEHP的条件,结果表明最佳降解条件为:温度30—35℃,p H 7.0.同时,不同初始浓度下DEHP的降解动力学研究表明Pseudomonas sp.XB对DEHP的降解符合一阶动力学模型.当DEHP浓度为100 mg·L~(-1)时,降解半衰期大约为8.25 h.通过GC-MS检测到了菌株XB降解DEHP的代谢产物,如邻苯二甲酸(2-乙基己基)单酯(MEHP)和2-乙基己基醇,推导了其降解途径.菌株Pseudomonas sp.XB还可以以其他3种常见PAEs(DMP、DEP、DBP)、苯酚、苯甲酸钠以及邻苯二甲酸等有机化合物为唯一碳源和能源生长,表明其降解环境有毒物质的能力.结果证明Pseudomonas sp.XB作为生态修复PAEs生物强化菌具有潜在的适用性.  相似文献   

12.
为去除环境中异菌脲残留,从某农药厂废水处理系统的活性污泥中分离到一株异菌脲降解菌YJN-G,对其进行鉴定和降解特性分析.通过形态特征、生理生化特性和16S rRNA基因序列相似性分析,将其初步鉴定为微杆菌属(Microbacterium sp.).当接种量为5%时,菌株YJN-G在24 h内能够降解100 mg/L的异菌脲.菌株YJN-G降解异菌脲的最适pH是7.0,最适温度为30-37℃.通过对其降解异菌脲产物的质谱分析,确定其代谢产物为N-(3,5-二氯苯基)-2,4-二氧代咪唑烷和异丙基氨基甲酸;菌株能够利用异丙基氨基甲酸生长,但是不能进一步降解N-(3,5-二氯苯基)-2,4-二氧代咪唑烷.菌株降解异菌脲的水解酶属于胞内酶.本研究结果可为异菌脲污染环境的生物修复提供菌株资源和理论依据.  相似文献   

13.
采用盆栽试验研究海洋细菌和酵母产生物表面活性剂、化学螯合剂对无柄小叶榕(Ficus concinna var.Subsessilis)修复盐碱地重金属Cd、Cu的强化效果.结果表明,强化试验下无柄小叶榕能耐受Cd、Cu胁迫正常生长,且体内重金属含量随生物表面活性剂投加浓度增大而升高,表现为根地上部分;300 mg·kg~(-1)细菌产生物表面活性剂强化下,根部Cd含量最大值为313 mg·kg~(-1),1 mmol·kg~(-1)柠檬酸(CA)-300 mg·kg~(-1)酵母产生物表面活性剂强化下,根部Cu最大含量为2156 mg·kg~(-1).强化剂添加下,能显著提高Cd、Cu在小叶榕体内的累积量,无柄小叶榕对土壤Cd、Cu的吸收富集能力显著提高,1 mmol·kg~(-1) CA—300 mg·kg~(-1)酵母产生物表面活性剂强化下Cd的最大富集系数为(9.76±0.10),是对照组S1(1.1±0.02)的8.90倍,300 mg·kg~(-1)酵母产生物表面活性剂单独强化下Cu的最大富集系数为(7.42±0.16),是S1(0.77±0.03)的9.60倍;无柄小叶榕向地上转移Cu的能力较弱,TF1,对Cu的提取修复潜能有限;300 mg·kg~(-1)细菌产生物表面活性剂强化下Cd的最大修复率为2.56%,是对照组S1的4.70倍,300 mg·kg~(-1)细菌产生物表面活性剂—1 mmol·kg~(-1) EDTA联合强化下Cu的最大修复率为1.80%,为S1的3.30倍.综上,无柄小叶榕对重金属污染的盐碱地有良好的修复潜力,生物表面活性剂和化学螯合剂的添加可有效提高小叶榕对重金属Cd和Cu的吸收富集效率.  相似文献   

14.
尽管生物法已广泛用于表面活性剂废水的处理,但低温对微生物的代谢活性产生明显不利影响,导致出水难以稳定达标.对筛选到的十二烷基硫酸钠(SDS)降解菌的降解能力进行考察,并对不同调控策略作用下该菌株的低温降解活性进行评估.对筛选到的菌株进行16S rRNA基因序列测定与分析.该菌株在不同温度、pH、底物浓度、接种量下的降解能力以及不同调控策略(低温驯化、外源物质添加)下的低温降解活性均以化学需氧量(COD)的去除率间接表示.结果筛选到一株SDS降解菌,命名为SDS-2. 16S rRNA基因序列分析表明该菌株属于假单胞菌属(Pseudomonas sp.).该菌株的最佳生长条件为30℃、pH 9和120 mg/L氨浓度,而接种量对其降解活性无明显促进作用.当SDS初始浓度为2 500 mg/L时,该菌株对SDS的去除速率(以COD计)可达到355.3 mg L~(-1) h~(-1). 15℃下,长期驯化可使该菌株的降解活性达到30℃时的水平;10℃下,添加外源物质丁二酸钠和硝酸钾可使COD的去除率在48 h内分别提高25.3%和24.6%;外加蛋白胨和复合维生素可使COD的去除率在24 h内分别提高22.8%和11.7%.本研究筛选到的Pseudomonassp.SDS-2具有高的SDS降解活性,可为实际含SDS表面活性剂废水的处理提供微生物资源;同时,本研究中的调控策略亦可为SDS低温生物处理提供潜在处理方法.  相似文献   

15.
甲醛是一种被广泛使用的重要化工原材料和有机溶剂,其35%~40%的水溶液是医学上和科研上常用的防腐剂。然而,甲醛作为一种原生毒素,具有强烈的致癌作用,将其释放到环境中不仅严重危害人体健康,而且具有极大的环境风险。利用微生物降解甲醛已成为治理甲醛污染的重要方法。为了获得高效的甲醛降解微生物,该研究采集北京某污水处理厂的活性污泥作为菌种分离源,利用稀释平板涂布及平板划线的方法分离纯化得到一株能以甲醛为唯一碳源生长的降解菌株,并将其命名为MCA01(CGMCC11443)。通过对该菌株的菌落形态和菌株形态进行观察,并采用法国生物-梅里埃公司的VITEK 2COMPACT全自动微生物分析系统及其配套的革兰氏阴性鉴定板对该菌株进行常规快速鉴定,结果显示,MCA01与恶臭假单胞菌(Pseudomonas putida)的相似度为99%。利用PCR扩增得到菌株的16S rRNA基因,并基于测序所得序列对菌株MCA01进行了BLAST比对及系统发育分析,结果指出此分离菌株与Pseudomonas putida的同源性为100%。综合上述方法,鉴定所分离的菌株MCA01属于恶臭假单胞菌。在以甲醛为唯一碳源的基础培养基中对菌株MCA01的甲醛耐受性及降解特性进行了研究,结果显示菌株MCA01至少能耐受1 600 mg·L~(-1)的甲醛浓度。当甲醛初始浓度≤1 000 mg·L~(-1)时,菌株MCA01能够在12 h内完全降解溶液中的甲醛;当甲醛浓度增至1 600 mg·L~(-1)时,菌株MCA01在24 h内对甲醛降解率为38.5%。菌株MCA01对甲醛具有良好的降解效率,该研究结果对殡仪场所内防腐废水等受甲醛污染环境的微生物治理具有较好的科学意义和应用价值。  相似文献   

16.
两株吡啶降解菌的分离与鉴定   总被引:1,自引:0,他引:1  
为了研究石油污染土壤中含氮杂环化合物的降解情况,该研究选择吡啶作为目标污染物,采用选择性富集培养的方法,从45份石油污染土壤样品中,分离得到260株降解吡啶污染物的高效降解菌株,选择降解效率最高的2株吡啶降解菌命名为菌株4-11和2-13,进行种属鉴定、细菌的生长情况和吡啶降解性能的考察.实验证明,60 h菌株4-11和2-13对质量浓度为1000 mg·L-1吡啶的降解率分别达到65.5%和64.1%.通过形态学、生理生化鉴定和16S rDNA序列比对分析,确定菌株4-11属于产硫酸杆菌(Thiobacillus)与Thiobacillus intermediu 同源性最高,为99.8 %,菌株2-13属屈挠杆菌(Flexibacter)与 Flexibacter giganteus同源性最高,为99.9 %.  相似文献   

17.
为快速有效地测定石油污染土壤中功能性微生物的活性变化,分别以石油烃、正十六烷烃、多环芳烃为自定义碳源,应用Biolog法研究油污土壤生物修复过程中石油烃、烷烃、多环芳烃降解菌的代谢活性.结果显示,向油污土壤中投加混合降解菌群进行生物强化修复处理,可以有效去除土壤中的石油烃,修复13周土壤中石油烃去除率达到42.3%;生物刺激和自然修复对土壤石油烃的去除率分别为28.3%和20.5%.Biolog测定结果表明,生物强化法修复初期的土壤微生物群落对石油烃、烷烃两种碳源的代谢能力较强,而生物刺激法修复后期的土壤微生物群落对烷烃有较强的代谢能力;不同处理的土壤微生物群落比较偏好、利用率较高的碳源是石油烃,其次是烷烃,而对多环芳烃几乎不利用;土壤中石油烃、烷烃降解菌的活性越大,土壤微生物对石油烃的去除效率越高.上述研究结果说明,通过利用Biolog法测定土壤微生物活性变化可有效指示土壤中石油烃的去除效果.  相似文献   

18.
中国东北油田开采区大量土地质量下降,石油污染治理与修复已经引起高度重视。通过对比各生物质炭理化性质差异及其对辽河油田石油污染土壤的修复效果,在修复石油污染土壤的同时,推进东北地区农业资源综合利用,对石油污染修复具有实际意义,对制备改性生物炭具有指导作用。以玉米(Zea mays)秸秆、芦苇(Phragmites australis)秸秆和松针(Pinusarmandi)为生物质材料在300℃条件下制备生物炭,测定其产率、灰分、pH值,并利用BET、能谱分析、扫描电镜和红外光谱等技术对不同生物质炭进行性质表征,通过40d的石油污染土壤修复试验对比不同生物质炭对总石油烃及各组分烃类的修复效率。结果表明,各生物质炭物化性状存在明显差异,松针生物炭扫描电镜呈层状结构,玉米秸秆生物炭具有孔状轮廓但孔隙内部覆有碎片,芦苇秸秆生物炭孔隙结构清晰且具有深度,比表面积为93.47 m~2·g~(-1)。经不同生物质炭40 d修复后,不同处理总石油烃及各组分烃类去除效果:芦苇秸秆生物炭玉米秸秆生物炭松针生物炭CK(对照组)。所有处理组中石油烃各组分的去除效果:饱和烃芳香烃非烃类物质,各组分烃类呈现不同降解规律。生物炭可提高石油污染土壤中总石油烃及各组分烃类物质的去除效果,其中芦苇秸秆生物炭对石油污染土壤的修复效率最高。  相似文献   

19.
为了提高设施农业滴滴涕(DDTs)污染土壤的修复效果,通过田间实验研究不同浓度的混合化学表面活性剂(SDBS-TW80)和生物表面活性剂鼠李糖脂(RL)对油菜和甲基营养型芽孢杆菌(Bacillus methylotrophicus)联合去除设施农业土壤中DDTs的强化作用。结果表明,1个月后,单种油菜处理、接种降解菌和油菜-降解菌联合处理土壤中DDTs降解率分别为12.0%、38.2%和43.1%,显著高于对照处理。SDBS-TW80和RL均能不同程度地强化油菜-微生物对土壤中滴滴涕的去除效果。SDBS-TW80施加量为40 mg·kg~(-1)时设施农业土壤中滴滴涕降解率最高(56.5%),RL施加量为5 mg·kg~(-1)时降解率最高(65.7%),RL比SDBS-TW80更有利于提高DDTs污染土壤的生物修复效果。此外,当RL施加量为5 mg·kg~(-1)时对于毒性较强的p,p'-DDE也具有较好的降解效果,降解率高达69.5%。结果证实利用表面活性剂强化油菜联合甲基营养型芽孢杆菌现场修复DDTs污染土壤是可行的。考虑到修复效率和毒害作用,实际应用中应优先选用5 mg·kg~(-1)RL组合。  相似文献   

20.
为研发稻田除稗剂杀草丹污染环境的生物修复技术和探究杀草丹微生物降解代谢机制,通过微生物驯化与富集技术,从长期施用杀草丹水稻田土样中分离纯化一株能够以杀草丹为唯一碳源生长的高效降解菌株T2,在36 h内对0.4 mmol/L的杀草丹降解率达到98.3%以上.根据其形态、生理生化特征及16S rRNA基因序列相似性分析,将其初步鉴定为芽孢杆菌属(Bacillus sp.T2).通过GC-MS鉴定产物为对氯苄硫醇、对氯苯甲醛和对氯苯甲酸;依据产物鉴定结果推测菌株T2通过硫酯键水解的方式起始杀草丹的降解,首先将其转化为对氯苄硫醇,随后进一步被氧化为对氯苯甲醛和对氯苯甲酸,该降解途径可能是一种新的杀草丹微生物降解代谢途径.因此菌株Bacillus sp.T2对杀草丹具有非常高的降解效率,在污染环境的微生物修复方面具有很好的应用前景;本研究结果也为揭示土壤中杀草丹微生物降解代谢过程及机制提供了研究材料和理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号