首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用矿渣硅酸盐水泥和氯烃烃胶研究了在营造的地下水环境和含水层环境中,氯烯烃胶对水泥混凝土与地下水之间发生相互作用的缓冲作用。研究结果表明,在营造的地下水和含水层环境中,氯烯烃胶对水泥混凝土与地下水之间的相互作用有一定的缓冲作用,主要表面阻止柱块的碱性和各种元素的释放。从而减弱了水泥89混凝土柱决的相互作用。  相似文献   

2.
Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10?6. To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01–7.50 % of the population’s HQ levels are higher than 1 and as much as 77.7–93.3 % of the population being in high cancer risk category and having a TR value >10?6. The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.  相似文献   

3.
The Magilligan sand spit dune field is situated on the eastern mouth of Lough Foyle in County Londonderry, Northern Ireland. It is a large triangular-shaped site some 7 km by 4 km by 1.5 km wide (about 800 ha) and maintains areas, particularly in the eastern part, with slacks that regularly flood in winter. The size of the system acts as a buffer to external drivers due to the large volume of groundwater stored, the longer travel distances and lower hydraulic gradients. However, unlike many other coastal dune sites with humid dune slacks in the British Isles the sand is not wholly underlain by silt and clay, as raised beach sand and gravel deposits are in contact with the sand aquifer in some places. A preliminary water balance suggests that the majority of the discharge from the sand aquifer occurs via the underlying raised beach deposits and only a small amount discharges directly from the sand aquifer beneath the foredunes. Available water level monitoring is skewed towards the wetter end of the dune system; no significant short-term water level trends are apparent. The data also indicate that recharge regularly takes place within the sand aquifer interspersed by periods of groundwater level recession.  相似文献   

4.
盐渍土系统土壤水-地下水转化规律研究   总被引:3,自引:0,他引:3  
罗金明  邓伟  张晓平  杨帆  李秀军 《生态环境》2007,16(6):1742-1747
通过野外定位观测和室内分析,探讨了苏打盐渍土微域特征(32m长的横截面)及其水分和地下水之间的转化规律。结果表明:土壤特征以及微地貌格局是制约土壤表层水分迁移的主要因素,并由此形成了大汽降水-土壤水-地下水转化的特殊模式。盐化草甸土分布在相对低洼的部位,苏打碱土分布在微坡地和高平地。苏打碱土质地为粉砂质亚粘土-粘土-粉砂-砂砾垂直结构,盐化草甸土以粉砂和砂砾结构为主。地表径流为水分迁移的关键环节,盐化草甸土成为地表水和地下水转化的通道。承接微坡地和高平地的径流,盐化草甸土在雨季含水率较多(甚至大到饱和)且迅速补给地下水,使地下水位逐渐上升。坡地土壤(苏打盐渍土)整个土层的含水率变化不显著。运用Vensim对盐渍土系统的土壤水-地下水的转化过程进行了模拟,结果与观测数据基本一致。在现代盐渍化过程研究中,以坡面系统为研究单元并考虑坡面径流,才能认识到盐渍化地区土壤水-地下水之间转化的实质。  相似文献   

5.
Groundwater is the main source of drinking water for the urban and rural residents in the plain area of the Xinjiang Uygur Autonomous Region, China. The quality of groundwater has a direct relationship with human health. Thus, 386 groundwater samples collected from April to August in 2003 were analyzed. The samples were collected in basic evaluation units which are determined on the basis of watersheds. Total dissolved solids, total hardness, pH value, NH3-N, C6H5OH, Chemiluminescence detection of permanganate index (CODMn) and intestinal germ group were evaluated according to the guidelines of Groundwater Quality Standard (GB/T14848-93). The quality of the groundwater in each evaluation unit was classified by using the One Veto Method (a unified approach stipulated by the Ministry of Water Resources). The results indicate that the groundwater in the mainstream area of the Tarim Basin and the Yerqiang River Sub-basin belongs to Category V; the groundwater in the Wulungu River Sub-basin, the Kaidu-Kongque River Sub-basin, the Kashgar River Sub-basin, the Cherchen River Sub-basin and the Hotan River Subbasin belongs to Category IV; the groundwater in the Aibi Lake System belongs to Category II, and the groundwater of other evaluation units belongs to Category III. The causes of water quality formation were concisely analyzed. The results can be useful for the evaluation and management of water resources in the Xinjiang Plain Area.  相似文献   

6.
This study presents the modelling approach and impact assessment of different strategies for managing wetland water resources and groundwater dynamics of landscapes which are characterised by the hydrological interactions of floodplains and the adjacent lowlands. The assessment of such impacts is based on the analysis of simulation results of complex scenarios of land-use changes and changes of the density of the drainage-network. The method has been applied to the 198 km2 Lower Havel River catchment as a typical example of a lowland–floodplain landscape. The model used consists of a coupled soil water and groundwater model, where the latter one is additionally coupled to the surface channel network. Thus, the hydrological processes of the variable saturated soil zone as well as lateral groundwater flow and the interactions between surface water and groundwater are simulated in an integrated manner. The model was validated for several years of significantly different meteorological conditions. The comparison of lateral and vertical water balance components showed the dominance of lateral flow processes and the importance of the interactions between surface water and groundwater for the overall water balance and the hydrological state of that type of landscape.The simulation of land-use change scenarios showed only minor effects of land-use change on the water balance and groundwater recharge. Changes of groundwater recharge were particularly small within the wetland areas being part of the floodplain where interactions between surface water and groundwater are most pronounced. Alterations in vertical groundwater recharge were counter-balanced by the lateral interaction between groundwater and surface water. More significant deviations in groundwater recharge and storage were observed in the more peripheral areas towards the catchment boundaries which are characterised by greater groundwater distance from the surface and less intense of ground water–surface water interactions.However, the simulation results assuming a coarsening of the drainage network density showed the importance of drainage structure and geometry for the water balance: The removal of the artificial draining ditches in the floodplain would result in significant alterations of total groundwater recharge, i.e., less recharge from winter to early summer and an increase of groundwater recharge during summer and autumn. Furthermore the different effects of groundwater recharge alterations on the dynamics of groundwater stages within the wetland areas close to the floodplains compared to the more peripheral areas could be quantified. Finally, it will be discussed that a well-adjusted co-ordination of different management measures is required to reach a sustainable water resources management of such lowland–floodplain landscapes.  相似文献   

7.
Modeling compensated root water and nutrient uptake   总被引:1,自引:0,他引:1  
Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater, and exerts a major influence on predictions of global climate models. In general, unsaturated models describe root uptake relatively simple. For example, root water uptake is mostly uncompensated and nutrient uptake is simulated assuming that all uptake is passive, through the water uptake pathway only. We present a new compensated root water and nutrient uptake model, implemented in HYDRUS. The so-called root adaptability factor represents a threshold value above which reduced root water or nutrient uptake in water- or nutrient-stressed parts of the root zone is fully compensated for by increased uptake in other soil regions that are less stressed. Using a critical value of the water stress index, water uptake compensation is proportional to the water stress response function. Total root nutrient uptake is determined from the total of active and passive nutrient uptake. The partitioning between passive and active uptake is controlled by the a priori defined concentration value cmax. Passive nutrient uptake is simulated by multiplying root water uptake with the dissolved nutrient concentration, for soil solution concentration values below cmax. Passive nutrient uptake is thus zero when cmax is equal to zero. As the active nutrient uptake is obtained from the difference between plant nutrient demand and passive nutrient uptake (using Michaelis–Menten kinetics), the presented model thus implies that reduced passive nutrient uptake is compensated for by active nutrient uptake. In addition, the proposed root uptake model includes compensation for active nutrient uptake, in a similar way as used for root water uptake. The proposed root water and nutrient uptake model is demonstrated by several hypothetical examples, for plants supplied by water due to capillary rise from groundwater and surface drip irrigation.  相似文献   

8.
Vegetation management in shallow groundwater table environments requires an understanding of the interactions between the physical and biological factors that determine root-zone soil salinization and moisture. In this study, the effects of groundwater depth and flood irrigation strategies on water and salt dynamics and reed water use were analyzed in the shallow groundwater region of the Yellow River Delta in China using the HYDRUS-1D model. The results indicated that there is a conflict between water, salt stress, and reed water use with variations in groundwater depth. A water table depth of 3.5 m is the minimum limit to maintain a safe level of soil salinity, but at this depth, the environmental stress on reeds is worsened by the decrease in soil water storage. Maintaining the flood pulses on the wetland, especially during May, may be critical for restoring the reed wetland in the Yellow River Delta.  相似文献   

9.
《Ecological modelling》2003,168(3):251-265
Varied utilization demands of society to the landscape are leading to an overlay of interests and thus to land use conflicts. Thereby, essential landscape functions like the regulation function (i.e. run-off regulation, groundwater recharge, groundwater protection, buffer functions of the soil, etc.) may be affected, and result in stresses to our natural resources like soil and water. The land use conflicts become especially obvious in a regional context. The diminution of such land use conflicts in terms of a regional management of environment and natural resources requires the knowledge of the response of the landscape balance to land use changes. The results of integrated landscape analysis enable the calculation of scenarios that allow the derivation of site-suitable land use variants with positive effects (decrease) to material out-wash from landscape parts and material inputs into surface water and groundwater. Numerous and complex methodological problems arise with such analysis, as well as with the investigation and assessment of the landscape water balance and water-bound material fluxes on the mesoscale.As a contribution for the resolution of these problems, the authors present a hierarchical nested approach that interlinks scale-specific methods. Due to the complexity and difficult implementation from purely system-oriented approaches in both applied landscape research and planning, the connection to more pragmatic approaches is herewith striked. Thus, information about the impact of land use changes on the landscape balance, as well as the assessment of landscape functions for both watersheds and administrative units should be enabled. Beside the check of the scale-specific applicability of models (i.e. E2D/3D, ABIMO, ASGi, SWAT, modifications of the USLE), the transferability of parameter- and indicator systems for the assessment of the landscape balance on the concerned scale levels is also investigated. An important objective is thereby the optimization of the validity of landscape information for the spatio-temporal levels of the mesoscale.  相似文献   

10.
太行山山前平原区地下水下降对该区土壤性质的影响   总被引:1,自引:0,他引:1  
王红  张爱军  张瑞芳  周大迈 《生态环境》2007,16(5):1518-1520
太行山山前平原区的地下水持续下降,对土壤成土条件产生了重大影响。通过对太行山山前平原区地下水及地下25 m内土层的土壤含水量进行研究,发现由于该区地下水下降引起饱和含水量土壤层由原来的地下1-2米,演变成现在的30-40米以下,土壤水库储水量显著降低;通过毛管水上升模拟试验,证实地下水已经不再参与土壤的形成过程,该区土壤的成土条件已经发生变化,土壤由潮土向褐土的方向发展。  相似文献   

11.
Surface water and groundwater always behave in a coupled manner and are major components of hydrologic cycle. However, surface water simulation models and groundwater simulation models are run separately most of the time. Few models focus on the impact of hydraulic changes in the surface water flows on the groundwater, or specifically, the impact of a water transfer project to fill a seasonally dry channel. In this study, a linked surface water and groundwater simulation model was developed to assess the impact of a trans-basin water diversion project on the groundwater. A typical plain area east of Beijing was selected as a case study, representing Beijing’s main source of groundwater used for drinking water. A surface water quality model of the Chaobai River was developed based on the Water Quality Analysis Simulation Program (WASP), and a groundwater model was developed based on the Modular Finite-Difference Groundwater Flow Model (MODFLOW) and the Modular 3-D transport model (MT3D). The results of the surface water simulation were used as input for the groundwater simulation. Water levels and four contaminants (NH3-N, CODMn, F, As) were simulated. With the same initial and boundary conditions, scenario analyses were performed to quantify the impact of different quantities of diversion water on the groundwater environment. The results showed the water quality of the groundwater sources was not significantly affected.  相似文献   

12.
北京市郊再生水灌区土壤有机氯农药垂向分布特征   总被引:3,自引:0,他引:3  
在北京市郊再生水灌区采用正三角型布点法进行了3个钻孔的采样工作,钻孔间隔为1m,从表层开始每隔0.5m取一个样,3个钻孔共36组样品,同时采集钻孔附近的灌溉水及地下水,分别测试了土壤的理化参数及其土壤、灌溉水及地下水中9种有机氯农药的质量分数。测试结果表明:表层土壤是有机氯农药的主要残留层,表层土壤中检出的DDTs和BHCs质量分数较高,分别为2814.21ng·kg^-1和1130.41ng·kg^-1,但均符合土壤环境质量一级标准,残留污染程度较轻;其他层位以七氯和艾氏剂为主要检出物,最高质量分数分别为1286.19ng·kg^-1和781.23ng·kg^-1;其中艾氏剂未在表层土壤中检出;灌区内未检出的γ-BHC和(DDE+DDD)/DDT的计算值为1.80,都说明近期内没有新污染源的输入;检出的有机氯农药在土壤剖面上的迁移能力有HEP〉ALD〉BHCs〉DDTs〉HCB,与地下水中检出的规律一致。  相似文献   

13.
Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region.  相似文献   

14.
典型灌区稻田多氯联苯残留特征及生态风险评估   总被引:2,自引:0,他引:2  
刘娟  赵振华  江莹  刘月利 《生态环境》2010,19(8):1979-1982
以南方典型小灌区的两块稻田为试验小区,采用GC-ECD对其田间水体和土壤中EPA优控14种多氯联苯(PCBs)进行了检测和定量分析。结果表明,14种PCBs同系物有不同程度检出,优势残留物主要以3氯和5氯取代PCBs为主,水和土壤占PCBs总量的88.24%、90.13%。水中∑PCBs质量浓度为24.09~310.34ng·L^-1,其中地表水均值为245.84ng·L^-1,地下水均值为96.46ng·L^-1;土壤中∑PCBs质量分数为10.01~54.63ng·g^-1,均值为33.92ng·g^-1。稻田地表水中的PCBs质量浓度远高于地下水,垂向迁移明显但速度较慢;稻田地表及地下水中PCBs质量浓度有随时间衰减的趋势,可能与水稻的生育周期有关;淹灌处理稻田PCBs质量分数高于节水灌溉。研究区毒性当量TEQ在2.65×10^-2~7.54×10^-2pg·g^-1之间,生态风险处于中等水平。地表及地下水均遭到污染,再加上PCBs具有生态累积效应,危害不容忽视。  相似文献   

15.
济南市地下水硝酸盐污染研究   总被引:2,自引:0,他引:2  
调查了济南市东郊工业区浅层地下水、南部山区补给区地下水及市区饮用水中硝酸盐现状及发展趋势。结果表明,工业区浅层地下水硝酸盐含量超出国家饮用水卫生标准;补给区地下水及市区饮用水硝酸盐也受到人类活动的影响,污染呈逐年上升趋势。分析了造成地下水硝酸盐污染的原因,提出了相应的防治措施与对策。  相似文献   

16.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

17.
Vegetation growth models often concentrate on the interaction of vegetation with soil moisture but usually omit the influence of groundwater. However the proximity of groundwater can have a profound effect on vegetation growth, because it strongly influences the spatial and temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. In two papers we describe the behavior of a coupled vegetation-groundwater-soil water model including the competition for water and light. In this first paper we describe the vegetation model, compare the model to measured flux data and show the influence of water and light competition in one dimension. In the second paper we focus on the influence of lateral groundwater flow and spatial patterns along a hillslope. The vegetation model is based on a biophysical representation of the soil-plant-atmosphere continuum. Transpiration and stomatal conductance depend both on atmospheric forcing and soil moisture content. Carbon assimilation depends on environmental conditions, stomatal conductance and biochemical processes. Light competition is driven by tree height and water competition is driven by root water uptake and its water and oxygen stress reaction. The modeled and measured H2O and CO2 fluxes compare well to observations on both a diurnal and a yearly timescale. Using an upscaling procedure long simulation runs were performed. These show the importance of light competition in temperate forests: once a tree is established under slightly unfavorable soil moisture conditions it can not be outcompeted by smaller trees with better soil moisture uptake capabilities, both in dry as in wet conditions. Performing the long simulation runs with a background mortality rate reproduces realistic densities of wet and dry adapted tree species along a wet to dry gradient. These simulations show that the influence of groundwater is apparent for a large range of groundwater depths, by both capillary rise and water logging. They also show that species composition and biomass have a larger influence on the water balance in eco-hydrological systems than soil and groundwater alone.  相似文献   

18.
The simulation of groundwater age (residence time) is used to study the impact of the Wisconsinian glaciation on the Canadian continental groundwater flow system. Key processes related to coupled groundwater flow and glaciation modeling are included in the model such as density-dependent flow, hydromechanical loading, subglacial infiltration, glacial isostasy, and permafrost development. It is found that mean groundwater ages span over a large range in values, between zero and 42 Myr; exceedingly old groundwater is found at large depths where there is little groundwater flow because of low permeabilities and because of the presence of very dense brines. During the glacial cycle, old, deep groundwater below the ice sheet mixes with the young subglacial meltwater that infiltrates into the subsurface; the water displacement due to subglacial recharge reaches depths up to 3 km. The depth of penetration of the meltwater is, however, strongly dependent on the permeability of the subsurface rocks, the presence of dense brines and the presence or absence on deep fractures or conductive faults. At the end of the simulation period, it was found that the mean groundwater age in regions affected by the ice sheet advance and retreat is younger than it was at the last interglacial period. This is also true for frozen groundwater in the permafrost area and suggests that significant parts of this water is of glacial origin. Finally, the simulation of groundwater age offers an alternative and pragmatic framework to understand groundwater flow during the Pleistocene and for paleo-hydrogeological studies because it records the history of the groundwater flow paths.  相似文献   

19.
This discussion is centralized around an incident that took place in the Belgian village Witry the 17th of September 2014. A tractor accident led to the discharge of an aqueous solution of the herbicide metazachlor into the creek Moyémont that further merges into the river Sûre. About 20 km downstream, these waters supply the lake of the Upper-Sûre in Luxembourg, the biggest artificial lake and the main drinking water reservoir in the country. The evolution of the concentration of metazachlor and its metabolite 479M08 was partially tracked down from the river Sûre to the dam situated in the east. At this location, the SEBES drinking water treatment plant has its raw water intake from the lake. After this incident, substantial pollution by the metazachlor breakdown product 479M08 of the lake and of some other groundwater sources in the Grand Duchy was revealed due to a strong monitoring program that was started by the national water authority (AGE). This was for example the case in the SEBES groundwater resource Scheidhof close to Luxembourg City. There is also the reason to assume that contamination by 479M08 existed already in the lake before the incident in Witry, certainly due to agricultural activity. In the second part of this discussion, these perceptions are placed in their appropriate political context. Indeed, the quality of groundwater and drinking water is strongly regulated in the European Union and in Luxembourg. Compound 479M08, for instance, is submitted to a maximum parametric value of 0.1 µg/L in Luxembourg. Several short- and longtime political measures had to be taken to guarantee the wholesomeness of the water from a legal point of view.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号