共查询到20条相似文献,搜索用时 0 毫秒
1.
Although lava-rock-based biofilters have demonstrated their efficiencies for hydrogen sulfide (H2S) removal found in odorous air emissions, the biogeochemical basis for this removal is unclear. In this study, samples of lava rock and rinse water from biofilters at Cedar Rapids Water Pollution Control Facilities (Iowa) were used to study the structure and chemical composition of lava rock and to identify the predominant microorganism(s) present in lava-rock-based biofilters. It was found that iron, in the form of Fe2+ and Fe3+, was present in lava rock. Although literature suggests that Acidithiobacillus thiooxidans are primarily responsible for gaseous H2S removal in biofilters, our study showed that Acidithiobacillus ferrooxidans was the dominant microorganism in the lava-rock-based biofilters. A novel mechanism for H2S removal in a lava-rock-based biofilter is proposed based on the biogeochemical analysis of lava rock. 相似文献
2.
研究了pH对生物滤池处理含H2S和NH3混合恶臭气体的影响,以及不同pH下的物质转化情况和去除机制。结果表明,不同pH下,生物滤池对H2S和NH3的去除率是不同的。在强酸性(pH为2左右)和中性(pH为7左右)条件下,H2S均有较好的去除效果,这分别归于嗜酸性硫细菌和非嗜酸性硫细菌的生物降解作用。低pH下,NH3的去除归于化学中和作用;中性(pH为7左右)条件下,NH3有较高的去除率,主要依靠生物硝化作用。通过考察pH对生物滤池处理效果的影响,确定了生物滤池处理含H2S和NH3混合恶臭气体的pH控制条件和去除机制,为恶臭气体生物处理工艺的选择提供依据。 相似文献
3.
A technique is presented that can be used to estimate the changes in physical structure in a natural biofilter packing medium, such as compost, over time. The technique applies information from tracer studies, grain size distribution, and pressure drop analysis to a model that estimates the number of channels, average channel diameter, number of particles, and specific surface area of the medium. Important operational factors, such as moisture content, pressure drop, and sulfate accumulation also were evaluated both in a conventionally operated biofilter and in one operated with periodic compost mixing. In the conventionally operated laboratory-scale compost biofilter, hydrogen sulfide (H2S) removal efficiency decreased from 100% to approximately 90% over 206 days of operation. In a similar system, operated with compost mixing, the H2S removal efficiency was maintained near 100%. Variations in media moisture conditions and specific surface area can explain the results observed in this study. Under conventional operation, drying near the inlet disintegrated the compost particles, producing a large number of particles and flow channels and increasing the specific surface area. At the top of the column, where moisture was added, particle size increased and specific surface area decreased. In the column with media mixing, moisture content, particle size, and specific surface area remained homogeneous. 相似文献
4.
In practice, biofilters are often conceived as entire, single-unit systems. However, the activity of a biofilter varies greatly over its depth. For a given period, each stage of the biofilter dominates ethylbenzene removal. Ethylbenzene was continuously removed in a mixed-medium biofilter. The overall removal efficiency of the ethylbenzene ranged from 70% to greater than 99%. In the upflow biofilter, the most dominant ethylbenzene degrading stage shifted consecutively from the bottom to the top of the reactor. Average water content throughout the biofilter media was relatively consistent. However, the water content of each stage fluctuated dramatically and was correlated with the ethylbenzene removal rate. Without any water addition, the biofilter was operated for 62 days above the target removal efficiency of 80%. A 9-month slow-release fertilizer, mixed with composting media, was an effective way to eliminate the nutrient deficiency in the biofilter operation. 相似文献
5.
This work investigated the characteristics and mechanisms of hydrogen sulfide adsorption by ferric and alum water treatment residuals (FARs) in solution. The results indicated that FARs had a high hydrogen sulfide adsorption capacity. pH 7 rather than higher pH (e.g. pH 8-10) was favorable for hydrogen sulfide removal. The Yan model fitted the breakthrough curves better than the Thomas model under varied pH values and concentrations. The Brunauer-Emmett-Teller surface area and the total pore volume of the FARs decreased after the adsorption of hydrogen sulfide. In particular, the volume of pores with a radius of 3-5 nm decreased, while the volume of pores with a radius of 2 nm increased. Therefore, it was inferred that new adsorption sites were generated during the adsorption process. The pH of the FARs increased greatly after adsorption. Moreover, differential scanning calorimetry analysis indicated that elemental sulfur was present in the FARs, while the derivative thermal gravimetry curves indicated the presence of sulfuric acid and sulfurous acid. These results indicated that both oxidization and ligand exchange contribute to the removal of hydrogen sulfide by FARs. Under anaerobic conditions, the maximum amount of hydrogen sulfide released was approximately 0.026 mg g(-1), which was less than 0.19% of the total amount adsorbed by the FARs. The hydrogen sulfide that was released may be re-adsorbed by the FARs and transformed into more stable mineral forms. Therefore, FARs are an excellent adsorbent for hydrogen sulfide. 相似文献
6.
Hydrogen sulfide adsorption and oxidation by corroding concrete surfaces at different air-flows were quantified using a pilot-scale sewer reactor. The setup was installed in an underground sewer research station with direct access to wastewater. Hydrogen sulfide gas was injected into the headspace of the sewer reactor once per hour in peak concentrations of approximately 500 ppmv. The investigated range of sewer air-flows was representative for natural ventilated sewer systems, and covered both laminar and turbulent conditions. The experiments demonstrated a significant effect of sewer air-flow on the kinetics of hydrogen sulfide removal from the sewer headspace. From the lowest to the highest air-flow investigated, the rate of adsorption and oxidation increased more than threefold. At all air-flows, the reaction kinetics followed a simple n-th order rate equation with a reaction order of 0.8. The effect of air-flow on hydrogen sulfide adsorption and oxidation kinetics was quantified by a simple empirical equation. 相似文献
7.
Hydrogen sulfide (H2S) is one of the most toxic and offensively odorous gases and is generated in anaerobic bioreactors. A middle-thermophilic sulfur-oxidizing bacterium (SOB), Thiomonas sp. strain RAN5, was isolated and applied for H2S removal from both artificial and anaerobically digested gas. When a bioreactor containing medium inoculated with RAN5 was aerated continuously with artificial gas (containing 100 ppm H2S) at 45 degrees C for 156 hr, the H2S concentration in the vented gas was reduced by 99%. This was not affected by the presence of other microbes in the bioreactor The H2S removal efficiency of the RAN5 bioreactor for anaerobically digested gas was greater than 99% at influent H2S concentrations ranging from 2 to 1800 ppm; the efficiency decreased to 90% at influent H2S concentrations greater than 2000 ppm. Thiomonas sp. strain RAN5 cannot survive at room temperature, and thus its leakage from a wastewater treatment plant would not damage sewage systems. These data suggest that Thiomonas sp. strain RAN5 may be a useful microorganism for H2S removal. 相似文献
8.
Simultaneous removal of NH3 and H2S was investigated using two types of biofilters--one packed with wood chips and the other with granular activated carbon (GAC). Experimental tests and measurements included analyses of removal efficiency (RE), metabolic products, and results of long-term operation (around 240 days). The REs for NH3 and H2S were 92 and 99.9%, respectively, before deactivation. After deactivation, the RE for NH3 and H2S were decreased to 30-50% and 75%, respectively. The activity of nitrifying bacteria was inhibited by high concentrations of H2S (over 200 ppm) but recovered gradually after H2S addition was ceased. However, the Thiobacillus thioparus as sulfur oxidizing bacteria did not show inhibition at the NH3 concentration under 150-ppm conditions. The deactivation of the biofilter was caused by metabolic products [elemental sulfur and (NH4)2SO4] accumulating on the packing materials during the extended operation. The removal capacities for NH3 and H2S were 6.0-8.0 and 45-75 mg N, S/L/hr, respectively. 相似文献
9.
Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation. 相似文献
10.
It is a common practice in the midwestern United States to raise swine in buildings with under-floor slurry storage systems designed to store manure for up to one year. These so-called "deep-pit" systems are a concentrated source for the emissions of ammonia (NH3), hydrogen sulfide (H2S), and odors. As part of a larger six-state research effort (U.S. Department of Agriculture-Initiative for Future Agriculture and Food Systems Project, "Aerial Pollutant Emissions from Confined Animal Buildings"), realtime NH3 and H2S with incremental odor emission data were collected for two annual slurry removal events. For this study, two 1000-head deep-pit swine finishing facilities in central Iowa were monitored with one-year storage of slurry maintained in a 2.4 m-deep concrete pit (or holding tank) below the animal-occupied zone. Results show that the H2S emission, measured during four independent slurry removal events over two years, increased by an average of 61.9 times relative to the before-removal H2S emission levels. This increase persisted during the agitation process of the slurry that on average occurred over an 8-hr time period. At the conclusion of slurry agitation, the H2S emission decreased by an average of 10.4 times the before-removal emission level. NH3 emission during agitation increased by an average of 4.6 times the before-removal emission level and increased by an average of 1.5 times the before-removal emission level after slurry removal was completed. Odor emission increased by a factor of 3.4 times the before-removal odor emission level and decreased after the slurry-removal event by a factor of 5.6 times the before-removal emission level. The results indicate that maintaining an adequate barn ventilation rate regardless of animal comfort demand is essential to keeping gas levels inside the barn below hazardous levels. 相似文献
11.
Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH 3), hydrogen sulfide (H 2S), and nitrous oxide (N 2O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH 3 removal efficiency, but increase outlet N 2O concentration. When MC was 67%, the average NH 3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H 2S removal efficiency dropped from 68.1–90.0% (1–34 days of the test period) to 36.8–63.7% (35–58 days of the test period); and the average outlet N 2O concentration increased by 25.5–60.1%. When MC was 55%, the average removal efficiency of NH 3, H 2S, and N 2O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and –18.9 ± 8.1%, respectively; and the average removal efficiency of NH 3, H 2S, and N 2O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and –24.5 ±12.1%, respectively. When MC was 45%, the highest average NH 3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N 2O removal efficiency for three MDs ranged from –18.8% to –12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD ( p < 0.05). To obtain high mitigation of NH 3 and H 2S and avoid elevated emission of N 2O and large pressure drop, 0.33 m MD at 55% MC is recommended. Implications: The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH3 and H2S, and to simultaneously prevent elevated emission of N2O and large pressure drop across the media. 相似文献
12.
A biofiltration technique was developed for removing a mixture of hydrogen sulfide (H2S), methanethiol (MeSH), and dimethyl sulfide (Me2S) from waste gases. Since H2S, especially at high concentrations, disturbs the removal of Me2S, two biotrickling filters with different microbes and operating pH levels were connected in series to create a two-stage system. Different loads of these gases were studied in order to determine their impact on the removal capacity of the system. The microbial consortia for these filters were enriched from the sludge of a Finnish refinery with bubbling H2S or Me2S. Acclimation for Me2S took 2 weeks, though no acclimation time was needed for the other gases. The first filter, at a pH of 2, removed most of the H2S and some of the MeSH and Me2S. The second filter, at a pH of approximately 6.5, removed the rest of the MeSH and most of the Me2S. The total maximum loads of the whole two-stage biotrickling filter were 1150 g/m3/day for H2S-S (suffix S indicates the results are counted as sulfur amounts), 879 g/m3/day for Me2S-S, and 66 g/m3/day for MeSH-S treated in a gas mixture. The average removal efficiencies for all gases tested were 99% or higher. 相似文献
13.
Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases. 相似文献
14.
To improve the removal efficiency on hydrogen sulfide (H 2S), a biofilter was developed and was made of polyvinyl chloride (PVC) pipes. The effects of three different packings (i.e., packing A, packing B, and packing C), containing different proportions of activated carbon, sawdust, wormcast, perlite, and pig manure compost, based on different biofilter parameters on H 2S removal efficiency, were investigated. With the extension of running time, the H 2S removal rate of packing A reached up to 90.12%, that of packing B reached a peak at 92.96%, and that of packing C was highest at 87.21%. The contribution rate of each packing at the bottom of the device was significantly greater ( p < 0.01) than that of other parts, and those of the top of the devices were all greater than those of the middle of the devices. The H 2S removal rate increased with greater filler layer height. The removal rate of group B increased first with humidity, and then declined, with the optimal humidity level for the removal of H 2S 50–65% in this study. With the prolongation of the run, the pH of packing A was reduced from 7.1 to 5.91, while the pH of packing B and C remained within the range of 6.53–7.10. An increase was found in the number of bacteria and fungi over time. The count of bacteria in packing B and C and following a decreasing order was bottom > middle > top, whereas that for fungi was the opposite. In conclusion, it is thought that packing B (comprising wormcast + sawdust + activated carbon) is more efficient in the removal of H 2S than the other packings and may thus be utilized in biofilters. These results hope to provide useful information for future related research on the removal efficiency of H 2S using packings. Implications: Wormcasts use as biological filter packing to remove H2S is limited and needs yet to be explored. A comparative study on the removal efficiency of H2S using three packings showed the packings that included wormcast were more efficient than others, and showed the combined features of physical absorption and biological removal with long sustainability and good efficiency, although these were largely influenced by environmental factors and nutrient content for the microorganisms. In summary, wormcast could be utilized in biological filters in the future in related research beacuse of its good efficiency and low cost. 相似文献
15.
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity. 相似文献
16.
The purpose of this research was to determine the efficiency of a polymer biocover for the abatement of H2S and NH3 emissions from an east-central Missouri swine lagoon with a total surface area of 7800 m2. The flux rate of NH3, H2S, and CH4 was monitored continuously from two adjacent, circular (d = 66 m) control and treatment plots using a nonintrusive, micrometeorological method during three independent sampling periods that ranged between 52 and 149 hr. Abatement rates were observed to undergo a temporal acclimation event in which NH3 abatement efficiency improved from 17 to 54% (p = < 0.0001 to 0.0005) and H2S abatement efficiency improved from 23 to 58% (p < 0.0001) over a 3-month period. The increase in abatement efficiency for NH3 and H2S over the sampling period was correlated with the development of a stable anaerobic floc layer on the bottom surface of the biocover that reduced mass transfer of NH3 and H2S across the surface. Analysis of methanogenesis activity showed that the biocover enhanced the rate of anaerobic digestion by 25% when compared with the control. The biocover-enhanced anaerobic digestion process was shown to represent an effective mechanism to counteract the accumulation of methanogenic substrates in the biocovered lagoon. 相似文献
17.
Environmental Science and Pollution Research - Hydrogen sulfide (H2S) is one of the main contaminants found in biogas, which is one of the end products of the anaerobic biodegradation of proteins... 相似文献
18.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500 degrees C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produceparticle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges ofthepyrolysis temperature and surfacepH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400 degrees C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S. 相似文献
19.
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions. 相似文献
20.
The characteristics and mechanisms of hydrogen sulfide (H 2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500°C) were investigated. The biochar used in the current study was derived from the camphor tree ( Cinnamomum camphora). The samples were ground and sieved to produce particle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H 2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H 2S sorption. Certain threshold ranges of the pyrolysis temperature and surface pH were observed, which, when exceeded, have dramatic effects on the H 2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400°C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H 2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H 2S. Implications: This paper studies the potential of biochar derived by camphor to adsorb hydrogen sulfide at environmentally sustainable temperatures. The different sizes of the biochars and the different temperatures of pyrolysis for the camphor particle have a great impact on adsorption of hydrogen sulfide. 相似文献
|